

SciVerse ScienceDirect

Journal of the European Ceramic Society 32 (2012) 541-545

www.elsevier.com/locate/jeurceramsoc

Effects of Al₂O₃ addition on the sintering behavior and microwave dielectric properties of CaSiO₃ ceramics

Huanping Wang ^a, Jinmin Chen ^a, Wenyi Yang ^a, Siqiao Feng ^a, Hongping Ma ^b, Guohua Jia ^a, Shiqing Xu ^a,*

^a College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, PR China
^b School of Mechanical & Automotive Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, PR China
Received 21 January 2011; received in revised form 5 September 2011; accepted 14 September 2011
Available online 14 October 2011

Abstract

The effects of Al₂O₃ addition on the densification, structure and microwave dielectric properties of CaSiO₃ ceramics have been investigated. The Al₂O₃ addition results in the presence of two distinct phases, e.g. Ca₂Al₂SiO₇ and CaAl₂Si₂O₈, which can restrict the growth of CaSiO₃ grains by surrounding their boundaries and also improve the bulk density of CaSiO₃–Al₂O₃ ceramics. However, excessive addition (\geq 2 wt%) of Al₂O₃ undermines the microwave dielectric properties of the title ceramics since the derived phases of Ca₂Al₂SiO₇ and CaAl₂Si₂O₈ have poor quality factor. The optimum amount of Al₂O₃ addition is found to be 1 wt%, and the derived CaSiO₃–Al₂O₃ ceramic sintered at 1250 °C presents improved microwave dielectric properties of ε_r = 6.66 and $Q \times f$ = 24,626 GHz, which is much better than those of pure CaSiO₃ ceramic sintered at 1340 °C ($Q \times f$ = 13,109 GHz).

Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

Keywords: Sintering; Electron microscopy; Dielectric properties; CaSiO₃ ceramic; Al₂O₃ addition

1. Introduction

Remarkable progress has been made in microwave related advanced wireless communication systems such as cellular phones, direct broadcasting satellites, wireless local area networks, global positioning systems and intelligent transport systems. $^{1-3}$ The available frequencies have therefore been extended from microwave to millimeter-wave ranges because large quantity of information must be transported with high speed in the later range. High operating frequency in these microwave applications requires dielectric materials with low dielectric constant (ε_r) , high quality factor $(Q \times f)$ and stable temperature coefficient of the resonant frequency $(\tau_f \leq \pm 10 \, \mathrm{ppm})$ °C). $^{4.5}$

CaSiO₃ ceramic has been proved to be an excellent dielectric material with low dielectric constant ($\varepsilon_r = 5$) and low dielectric loss ($\tan \delta = (1.0-3.0) \times 10^{-4}$). However, the sintering temperature range of pure CaSiO₃ ceramic is very narrow. Chakradhar

et al. pointed out that it was difficult to obtain dense CaSiO₃ ceramic since its grains grew exceptionally and the bulk CaSiO₃ ceramic became more porous with the increase of the calcination temperature. In our previous work, the sintering behavior and microwave dielectric properties of CaSiO₃ ceramics have been investigated by the traditional solid-state process and a sol-gel method, respectively.⁸ The maximum bulk density of CaSiO₃ ceramic sintered at 1340 °C prepared by the conventional solidstate process is 2.439 g/cm³, and the microwave dielectric properties are $\varepsilon_r = 6.59$ and $Q \times f = 13,109$ GHz. Whereas for CaSiO₃ ceramic obtained by the sol-gel method, the maximum bulk density is 2.505 g/cm³ and the microwave dielectric properties are ε_r = 6.69 and $Q \times f$ = 25,398 GHz. The density value of the above two samples synthesized either by the traditional solid-state method or by the sol-gel method is much smaller than that of the theoretical density of the CaSiO3 ceramic, which is 2.91 g/cm³, indicating that it is difficult to obtain dense CaSiO₃ ceramic.

In order to improve the sintering characteristic and microwave dielectric properties, Sun and co-workers have used Mg^{2+} to substitute Ca^{2+} in the $CaSiO_3$ host. ^{9,10} When the substitution is 0.1 in molar ratio, the bulk density of $(Ca_{0.9}Mg_{0.1})SiO_3$

^{*} Corresponding author. Tel.: +86 571 86835781; fax: +86 571 28889527. *E-mail address*: sxucjlu@hotmail.com (S. Xu).

ceramic is 2.75 g/cm³, which exhibits excellent dielectric properties of $\varepsilon_r = 6.49$, $Q \times f = 62,420$ GHz and $\tau_f = -43.3$ ppm/°C. In addition, the synthesis of CaO-B₂O₃-SiO₂ (CBS) glass-ceramics has been investigated and B2O3 has been added into CaSiO₃ ceramics to decrease its sintering temperature. 11–14 The B₂O₃ addition results in the presence of a CaO–B₂O₃–SiO₂ glass phase, which is supposed to lower the densification temperature of CaSiO₃ ceramic. With 6 wt% B₂O₃ addition, the CaSiO₃ ceramic sintered at 1100 °C has good dielectric properties of $\varepsilon_r = 6.84$ and $\tan \delta = 6.9 \times 10^{-4}$ (1 MHz). Thu et al. found that the optimal sintering temperature of CBS glass-ceramic is 820 °C, and the glass-ceramic with the major phases of CaSiO₃, CaB₂O₄ and SiO₂ possesses dielectric properties of $\varepsilon_r = 6.5$ and $\tan \delta = 2 \times 10^{-3}$ (10 MHz). ¹² Chang and co-workers demonstrated that the dielectric properties of the CBS system consisting of CaSiO₃, Ca₆Si₄O₃ and CaB₂O₄ are $\varepsilon_r = 5.1$ and $\tan \delta = 1.3 \times 10^{-3} (1 \text{ GHz}).^{13,14}$

Al₂O₃ ceramic with low ε_r (9.8) and high $Q \times f$ (360,000 GHz) is also a promising material for millimeterwave applications, ^{15,16} and commercially available alumina normally has a $Q \times f$ value around 10,000–20,000 GHz. ¹⁷ In this work, the addition of Al₂O₃ was used to improve the sintering characteristic of CaSiO₃ ceramic, and the effects of Al₂O₃ addition on the microstructure and microwave dielectric properties of CaSiO₃–Al₂O₃ ceramics were investigated and discussed.

2. Experimental procedure

CaSiO₃ powders were prepared by a conventional solid-state method using commercial oxide powders (>99.5%) of CaCO₃ and SiO₂ as raw materials. Stoichiometric CaCO₃ and SiO₂ powders were weighed and ground in ethanol for 24 h in a balling mill with ZrO₂ balls. Then the mixture was calcined at 1200 °C for 2 h in air and CaSiO₃ powders were obtained. The CaCO₃–SiO₂ powders calcined at 1200 °C were mixed with commercial Al₂O₃ powders (>99.95%), and the content of Al₂O₃ was 0.1, 0.3, 0.6, 1, 2 and 5 in weight percent. The mixed powders were remilled for 24 h with 8 wt% polyvinyl alcohol (PVA) solution as a binder, and then pressed into pellets with the sizes of 15 mm in diameter and 8 mm in thickness. These pellets were sintered at 1200–1275 °C for 2 h in air with a heating rate of 5 °C/min.

The bulk densities of the sintered pellets were measured by the Archimedes method using distilled water as medium. The sintered bulks were broken up and ground to powders using an agate mortar. Crystal structures of the powders were performed by X-ray diffraction pattern (XRD, ARL XTRA) with Cu K_{α} radiation (36 kV, 30 mA, 2θ = 10–80°). The polished surfaces of the ceramics were investigated by scanning electron microscopy (SEM, TM3000) after thermal etching. The dielectric constants ε_r and the quality values $Q \times f$ were measured by Hakki–Coleman dielectric resonator method using an Agilent 8719ET (50 MHz to 13.5 GHz) Network Analyzer. The center frequencies of the sintered bulks were 10–11 GHz.

Fig. 1. Bulk densities of $CaSiO_3-Al_2O_3$ ceramics sintered at different temperatures with (a) 0.1 wt%, (b) 0.3 wt%, (c) 0.6 wt%, (d) 1 wt%, (e) 2 wt% and (f) 5 wt% Al_2O_3 additions.

3. Results and discussion

Fig. 1 shows the bulk densities of CaSiO₃–Al₂O₃ ceramics sintered at different temperatures with different amounts of Al₂O₃ addition. It is obvious that with the increase of the sintering temperature, the densities of all bulks increase to a maximum value and then they are saturated. The optimal sintering temperature of CaSiO₃ ceramics with 0.1–0.3 wt% and 0.6–5 wt% Al₂O₃ additions are 1275 °C and 1250 °C, respectively. Sintered at 1250 °C, the bulk densities of CaSiO₃ ceramics with 0.1 wt%, 0.3 wt%, 0.6 wt%, 1 wt%, 2 wt% and 5 wt% Al₂O₃ additions are 2.70 g/cm³, 2.73 g/cm³, 2.74 g/cm³, 2.77 g/cm³, 2.79 g/cm³ and 2.76 g/cm³, respectively. In our previous work, the maximum bulk density of CaSiO₃ ceramics prepared by the conventional solid-state process was 2.439 g/cm³, which is 84% of the

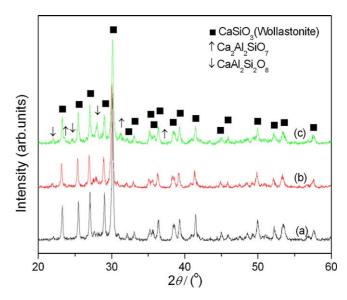


Fig. 2. XRD patterns of CaSiO₃ $-Al_2O_3$ ceramics sintered at $1250\,^{\circ}C$ with (a) 1 wt%, (b) 2 wt% and (c) 5 wt% Al_2O_3 additions.

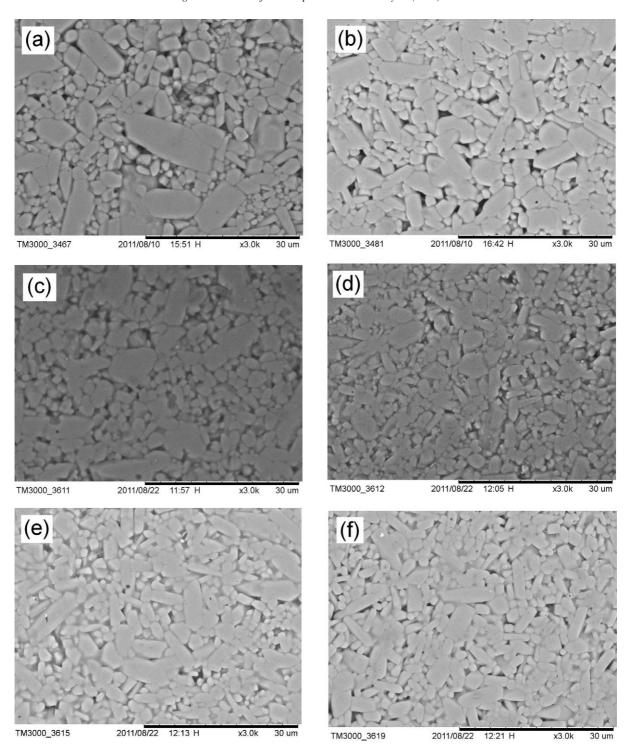


Fig. 3. SEM micrographs of $CaSiO_3-Al_2O_3$ ceramics sintered at $1250\,^{\circ}C$ with (a) 0.1 wt%, (b) 0.3 wt%, (c) 0.6 wt%, (d) 1 wt%, (e) 2 wt% and (f) 5 wt% Al_2O_3 additions.

theoretical density. These results in the present work indicate that appropriate Al_2O_3 addition benefits the sintering process of $CaSiO_3$ ceramic and a density of $CaSiO_3$ ceramic as high as 96% of the theoretical value can be achieved with 1–2 wt% Al_2O_3 addition. It is well known that the high melting point of Al_2O_3 requires a high sintering temperature around 1700 °C so that excessive Al_2O_3 addition will result in the increase of sintering temperature of $CaSiO_3$ – Al_2O_3 ceramic.

Fig. 2 shows the X-ray diffraction patterns of $CaSiO_3$ – Al_2O_3 ceramics sintered at $1250\,^{\circ}C$ with different amounts of Al_2O_3 addition. When the Al_2O_3 additions are 1-5 wt%, the primary crystal phase of $CaSiO_3$ – Al_2O_3 ceramics is wollastonite– $CaSiO_3$, and trace amounts of $Ca_2Al_2SiO_7$ and $CaAl_2Si_2O_8$ are observed, which suggests that the reaction between Al_2O_3 and $CaSiO_3$ results in the presence of $Ca_2Al_2SiO_7$ and $CaAl_2Si_2O_8$. Moreover, sequential addition of

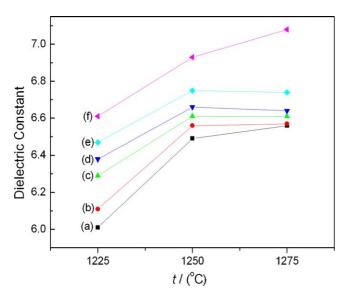


Fig. 4. Dielectric constants of $CaSiO_3-Al_2O_3$ ceramics sintered at different temperatures with (a) 0.1 wt%, (b) 0.3 wt%, (c) 0.6 wt%, (d) 1 wt%, (e) 2 wt% and (f) 5 wt% Al_2O_3 additions.

Al₂O₃ weakens the intensities of diffraction peaks of CaSiO₃ but strengthens those of Ca₂Al₂SiO₇ and CaAl₂Si₂O₈.

The microstructures of CaSiO₃-Al₂O₃ ceramics sintered at 1250 °C with different amounts of Al₂O₃ addition are presented in Fig. 3. It can be intuitively seen that the grain structure is uniformed distributed throughout the samples, e.g. the coarse grains are surrounded by the fine grains. As the Al₂O₃ content increases from 0.1 wt% to 0.6 wt%, the average size of the coarse grains decreases from 10 µm to 6 µm. In our previous work, the grains grows exceptionally and results in the pores in the pure CaSiO₃ ceramics.⁸ Therefore the incorporation of Al₂O₃ effectively restricts the abnormal grain growth of CaSiO₃. With Al₂O₃ addition, the sintering process of CaSiO₃ ceramic can be improved due to the presence of the new phases of Ca₂Al₂SiO₇ and CaAl₂Si₂O₈, which restricts the growth of CaSiO₃ grains by surrounding their boundaries. It indicates that appropriate Al₂O₃ addition (0.6–5 wt%) benefits the sintering process of CaSiO₃ ceramics, which is consistent with the results of bulk densities sintered at different temperatures, as shown in Fig. 1.

Fig. 4 illustrates the dielectric constant (ε_r) of CaSiO₃–Al₂O₃ ceramics sintered at different temperatures with different amounts of Al₂O₃ addition. It is evident that the dielectric constants increase to a maximum value and then they are saturated. With the fixed CaSiO₃–Al₂O₃ component, the relationship between dielectric constant and sintering temperature follows the same trend as that between density and sintering temperature because a higher density is associated with a lower porosity and results in a higher dielectric constant. However, the dielectric constant increases with Al₂O₃ addition, and the maximum ε_r of CaSiO₃–Al₂O₃ ceramics with 0.1 wt%, 0.3 wt%, 0.6 wt%, 1 wt%, 2 wt% and 5 wt% Al₂O₃ additions are 6.56, 6.57, 6.61, 6.66, 6.75 and 7.08, respectively. The gradual increase of the value of dielectric constant with Al₂O₃ addition is attributed to the higher dielectric constant of Al₂O₃ (9.8) compared with that

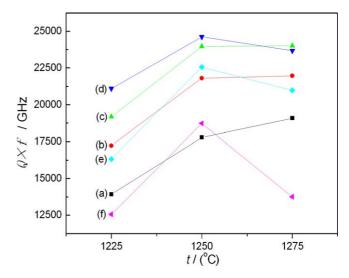


Fig. 5. $Q \times f$ values of CaSiO₃–Al₂O₃ ceramics sintered at different temperatures with (a) 0.1 wt%, (b) 0.3 wt%, (c) 0.6 wt%, (d) 1 wt%, (e) 2 wt% and (f) 5 wt% Al₂O₃ additions.

of CaSiO₃ (6.59), which results in the larger dielectric constants of Ca₂Al₂SiO₇ and CaAl₂Si₂O₈ with respect to that of CaSiO₃.

The quality values $(Q \times f)$ of CaSiO₃-Al₂O₃ ceramics sintered at different temperatures with different amounts of Al₂O₃ addition are demonstrated in Fig. 5. The optimal $Q \times f$ values of CaSiO₃-Al₂O₃ ceramics with 0.1 wt%, 0.3 wt%, 0.6 wt%, 1 wt%, 2 wt% and 5 wt% Al₂O₃ additions are 19,087 GHz, 21,974 GHz, 24,018 GHz, 24,626 GHz, 22,566 GHz and 18,738 GHz, respectively. These results indicate that the appropriate Al₂O₃ addition (0.6–1 wt%) benefits the microwave dielectric properties. However, excessive Al₂O₃ addition (≥2 wt%) degrades the quality factor, although Al₂O₃ ceramics have been proved to be an excellent dielectric material with high $Q \times f$ value (360,000 GHz). ^{15,16} Since the Ca₂Al₂SiO₇ and CaAl₂Si₂O₈ restrict the growth of CaSiO₃ grains by surrounding their boundaries, the appropriate Al₂O₃ addition improves the densities of CaSiO₃-Al₂O₃ ceramics, and therefore improves the microwave dielectric properties. Due to the poor quality factor of Ca₂Al₂SiO₇ and CaAl₂Si₂O₈, ¹⁸ the excessive addition of Al₂O₃ undermines the microwave dielectric properties. With 1 wt% Al₂O₃ addition, the CaSiO₃-Al₂O₃ ceramic sintered at 1250 °C possesses good microwave dielectric properties: $\varepsilon_r = 6.66$ and $Q \times f = 24,626$ GHz, which shows much preferable properties compared with those of pure CaSiO₃ ceramic sintered at 1340 °C ($Q \times f = 13,109 \text{ GHz}$).

4. Conclusion

The sintering behavior and microwave dielectric properties of CaSiO₃ ceramics with Al₂O₃ addition were investigated. The phase of Al₂O₃ was not detected in the CaSiO₃–Al₂O₃ ceramics and Al₂O₃ had reacted with CaSiO₃ to form Ca₂Al₂SiO₇ and CaAl₂Si₂O₈. Since the new phases of Ca₂Al₂SiO₇ and CaAl₂Si₂O₈ restrict the growth of CaSiO₃ grains by surrounding their boundaries, the appropriate Al₂O₃ addition (0.6–1 wt%) improves the densities of CaSiO₃–Al₂O₃ ceramics, and

therefore improves the microwave dielectric properties. The excessive Al_2O_3 addition (≥ 2 wt%) undermines the microwave dielectric properties because of the poor quality factor of the new phases of $Ca_2Al_2SiO_7$ and $CaAl_2Si_2O_8$. With 1 wt% Al_2O_3 addition, the $CaSiO_3$ – Al_2O_3 ceramic sintered at 1250 °C possesses much better microwave dielectric properties: ε_r = 6.66 and $Q \times f$ = 24,626 GHz, compared with those of pure $CaSiO_3$ ceramic sintered at 1340 °C.

Acknowledgement

This work was partially supported by Project of New Century Excellent Talents in University (Grant No. NCET-07–0786), the Science and Technology Innovative Research Team of Zhejiang Province (Grant No. 2009R50010) and the Zhejiang Science and Technology Innovation Projects for students (Grant No. 2010R409012).

References

- Su H, Wu SH. Studies on the (Mg, Zn)TiO₃-CaTiO₃ microwave dielectric ceramics. *Mater Lett* 2005;59(18):2337-41.
- Anjana PS, Joseph T, Sebastian MT. Low temperature sintering and microwave dielectric properties of Ce₂(WO₄)₃ ceramics. Ceram Int 2010;36(5):1535–40.
- 3. Freer R, Azough F. Microstructural engineering of microwave dielectric ceramics. *J Eur Ceram Soc* 2008;**28**(7):1433–41.
- Kim ES, Kim SH, Lee BI. Low-temperature sintering and microwave dielectric properties of CaWO₄ ceramics for LTCC applications. *J Eur Ceram Soc* 2006;26(10–11):2101–4.
- Kono M, Takagi H, Tatekawa T, Tamura H. High Q dielectric resonator material with low dielectric constant for millimeter-wave applications. J Eur Ceram Soc 2006;26(10–11):1909–12.

- Cai W, Jiang T, Tan XQ, Wei Q, Li Y. Development of low dielectric constant calcium silicate fired at low temperature. *Electron Compon Mater* 2002;21:16–8.
- Chakradhar RPS, Nagabhushana BM, Chandrappa GT, Ramesh KP, Rao JL. Solution combustion derived nanocrystalline macroporous wollastonite ceramics. *Mater Chem Phys* 2006;95:169–75.
- Wang HP, Zhang QL, Yang H, Sun HP. Synthesis and microwave dielectric properties of CaSiO₃ nanopowder by the sol–gel process. *Ceram Int* 2008;34:1405–8.
- Sun HP, Zhang QL, Yang H, Zou JL. (Ca_{1-x}Mg_x)SiO₃: a low-permittivity microwave dielectric ceramic system. *Mater Sci Eng B* 2007;138: 46–50.
- Wang HP, Zhang QL, Yang H, Sun HP. Synthesis and microwave dielectric properties of (Ca_{1-x}Mg_x)SiO₃ ceramic by sol-gel process. *Acta Phys - Chim Sin* 2007;23(4):609–13.
- Wang HP, Xu SQ, Lu SQ, Zhao SL, Wang BL. Dielectric properties and microstructures of CaSiO₃ ceramics with B₂O₃ addition. *Ceram Int* 2009:35:2715–8.
- Zhu HK, Liu M, Zhou HQ, Li LQ, Lv AG. Study on properties of CaO–SiO₂–B₂O₃ system glass–ceramic. *Mater Res Bull* 2007;42(6):1137–44.
- Chang CR, Jean JH. Crystallization kinetics and mechanism of low-dielectric, low-temperature, cofirable CaO-B₂O₃-SiO₂ glass-ceramics. *J Am Ceram Soc* 1999;82:1725–32.
- Wang SH, Zhou HP, Qiao L. A ceramic for the high frequency multilayer chip inductor. *Mater Mech Eng* 2003;27:17–20.
- Song KX, Wu SY, Chen XM. Effect of Y₂O₃ addition on microwave dielectric characteristics of Al₂O₃ ceramics. *Mater Lett* 2007;61(16):3357–60.
- Penn SJ, Templeton A, Wang XR, Xu MS, Reece M, Schrapel K, Alford NM. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J Am Ceram Soc 1997;80(7):1885–8.
- Huang CL, Wang JJ, Yen FS, Huang CY. Microwave dielectric properties and sintering behavior of nano-scaled (α + θ)–Al₂O₃ ceramics. *Mater Res Bull* 2008;43(6):1463–71.
- 18. Chen JM, Wang HP, Feng SQ, Ma HP, Deng DG, Xu SQ. Effects of CaSiO₃ addition on sintering behavior and microwave dielectric properties of Al₂O₃ ceramics. *Ceram Int* 2011;37:989–93.