

Journal of the European Ceramic Society 27 (2007) 1137–1142

www.elsevier.com/locate/jeurceramsoc

Electrochemical properties of the LiCoO₂ powder obtained by sol–gel method

L. Predoană^a, A. Barău^b, M. Zaharescu^{a,*}, H. Vassilchina^b, N. Velinova^b, B. Banov^b, A. Momchilov^b

a Institute of Physical Chemistry "I.G. Murgulescu"-Romanian Academy (IPC-RAS), 060021 Bucharest, Romania
 b Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences (IEES-BAS), 1113 Sofia, Bulgaria
 Available online 10 July 2006

Abstract

Lithiated layered transitional metal oxide materials of the LiMO₂ type and especially LiCoO₂ presents interesting specific properties as high energy density, long life cycle, and constant discharging properties in a wide range of working conditions as well as a good safety. These properties made these materials excellent candidates as active compounds for high capacity cathode materials for rechargeable lithium batteries.

In the present work, $LiCoO_2$ powder was prepared by sol-gel method using inorganic precursors, $LiNO_3$ and $Co(NO_3)_2 \cdot 6H_2O$, and citric acid as chelating agent.

The prepared powders were studied by DTA/TG analysis. Based on the DTA/TG results, several thermal treatments between 300 and 700 °C were performed. IR spectroscopy, X-ray diffraction determinations were performed along with electrochemical measurements.

The correlation between the structure of the obtained powders, determined by the applied thermal treatment, and the electrochemical behavior was established.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Sol-gel processes; X-ray methods; Electrical properties; Batteries

1. Introduction

Lithium-based layered transition metal oxides like LiMO₂ (where M is a 3d transition metal such as Ni, Co, Mn, Al, V) have attracted a worldwide great interest in the last period of time. Their specific properties such as high energy density, long cycle life, good safety, constant discharging properties and wide range of working temperatures made them excellent candidates as active compounds for high capacity cathode materials for rechargeable lithium batteries.

The usual structure of these materials is similar with sodium chloride lattice with the cations filling the octahedral interstices and oxygen atoms situated in close packed sites. In most of the cases in LiMO₂ oxides, the cations are arranged in an ordered structure that presents tunnels that permit the deintercalation and reintercalation of the lithium ions during the recharge process, promoting it by this. $^{1-4}$

Among other compounds mentioned above, LiCoO₂ is the most used material for the commercial lithium batteries due to its excellent electrochemical stability after a long period of cycling. The excellent stability comes from the material structural stability, where the layered cation ordering is extremely well preserved even after a repeated process of insertion and removal of Li⁺ ions.

Even though the technology is rather expensive and the material is highly toxic, lithium cobaltite is still the mostly used cathode material in lithium-based batteries.

New approaches for the preparation of LiCoO₂ with improved properties have been developed in the last period of time. The sol–gel method is a very widely spread technique for both powders and films preparation due to some well known advantages: an easy way to obtain homogenous distribution of precursors, the possibility to introduce controlled amounts of dopants, chemical methods of reaction control, viscosity advanced control as well as low processing temperatures.⁵

Several sol–gel routes were approached in order to prepare LiCoO₂. The sol–gel method starting with alkoxides was used by Fey et al., ⁶ Quinlan et al., ⁷ Szatvanyi et al. ⁸ The carboxylic route was experienced by Yazami et al., ⁹ Yoon and Kim, ¹⁰ Shlyakhtin

^{*} Corresponding author. Tel.: +40 13121147; fax: +40 13121147. *E-mail addresses*: mzaharescu@icf.ro, mzaharescu@chimfiz.icf.ro (M. Zaharescu).

et al.¹¹ and Cho et al.¹² Some combined inorganic-carboxylic route were also taken into consideration by Zhecheva et al.,¹³ Kang et al.,¹⁴ Kushida and Kuriyama¹⁵ and Uchihida et al.¹⁶

Using carboxylic route the bonding of the metallic ions in a chelating complex is assumed to lead to a highly homogeneous precursor gel and should diminish the particle size of the resulting oxides due to their formation in an organic matrix. In the same time during the thermal treatment the organic species evolved by matrix decomposition could be retained on the particle surface, hindering again the particle growth.⁸

In the present work we took into consideration an inorganic-carboxylic route starting with $Co(NO_3)_3 \cdot 6H_2O$, LiNO₃ and using citric acid as chelating agent for LiCoO₂ powder synthesis.

2. Experimental

2.1. Sample preparation

As starting compounds, the following materials were employed: $Co(NO_3)_3 \cdot 6H_2O$ and LiNO_3 as metal oxides sources, absolute alcohol p.a. reagent as solvent and citric acid as chelating agent. The precursors were introduced with the following molar ratio Li: $Co:C_6H_8O_7 \cdot H_2O = 1.1:1:2$. The solution pH was corrected to 5–5.5 by NH_3 addition. The solution was left for gelation in a dry oven at 80 °C and were subjected to differential thermal analysis and thermogravimetric analysis (DTA/TGA) in order to establish the thermal treatment schedule. Based on the obtained results, the gel was thermally treated with a heating rate of 1 °C/min up to desired temperature in the range 300–700 °C, where for 24-h plateau was maintained.

2.2. Structural characterization of the samples

The thermal behavior of $LiCoO_2$ powders was determined by differential thermal analysis and thermogravimetric analysis (DTA/TGA) using a MOM—Budapest (Hungary), OD—103 Derivatograph, up to $1000\,^{\circ}C$.

The phase composition of the samples was determined by a X-ray analysis, using Philips APD 15 powder diffractometer with Cu K α radiation, internal Si standard and computer data management.

The structural characterization of the gel was realized by IR spectroscopy, using a Specord M-80 spectrometer and KBr pellets.

2.3. Electrochemical characterization of the samples

The electrochemical characteristics were performed in a two type of traditional cells¹⁷:

- three-electrodes glass cell with lithium reference electrode in excess of electrolyte, and with a floating test electrode and
- in a three-electrode metal cell fully modeling coin cell CR2032 but with the advantage of reference electrode.

The electrolyte consisted of a solution of 1 M LiPF₆ (or LiClO₄) in a EC:PC:DMC (ethylene carbonate, propylene carbonate, dimethyl carbonate) in 1:1:2 ratio by volume mixture. The composite test electrode material was a mixture of the compounds studied with Teflonized Acetylene Black (TAB-2) at a 8:2 ratio by weight, pressed on 15 mm in diameter expanded nickel grid, covered on both sides. The weights of the test electrodes typically were 50 mg, without the nickel grid. The 0.2 C charge–discharge currents were applied in all of the electrochemical tests.

3. Results and discussions

In the experimental conditions presented above an amorphous violet gel was obtained.

3.1. DTG/TGA analysis

DTA/TG analysis of the obtained gel is presented in Fig. 1. The loss of weight starts at $70\,^{\circ}\text{C}$ with the alcohol and absorbed water evolution. At higher temperatures the complex Li–Co citrate gel formed in the experimental conditions mentioned above decomposes. The thermal effect at $260\,^{\circ}\text{C}$ is assigned to burning out organic residue resulted form the complex decomposition. The nitrate brought by the used precursors decomposes in the same temperature range. Some thermal effects at temperature higher than $500\,^{\circ}\text{C}$ can be attributed to the structural OH evolution and LiCoO₂ formation. The corresponding thermal effects and their assignment are summarized in Table 1.

3.2. IR analysis

The characteristic IR vibration bands corresponding to the starting precursors (LiNO₃, Co(NO₃)₃·6H₂O and citric acid) together with the vibration bands of the as-prepared gel are presented in Table 2.

The as-prepared gel presents a different IR spectrum, as compared to the reagents used for its preparation. The broad band

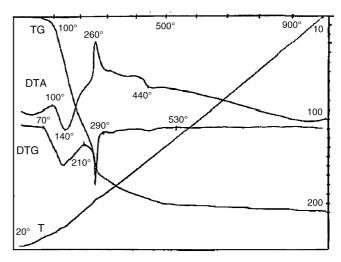


Fig. 1. DTG/TGA curves of LiCoO₂ starting precursor.

Table 1 DTA/TGA results of the LiCoO₂ precursor gel

Sample	Temperature range (°C)	Effects (°C)		Weight loss (%)	Assignment	
		Endo	Exo			
LiCoO ₂ from LiNO ₃ and Co(NO ₃) ₃ .6H ₂ O with C ₆ H ₈ O ₇ ·H ₂ O	20–210	140	100	30.65	Adsorbed water and ROH evolution; Li–Co citrate complex decomposition	
	210-290		260	6.88	Burning out organic residue and nitrates decomposition	
	290-530	440	_	8.06	Structural OH evolution and	
	530-1000	_	_	8.44	LiCoO ₂ formation	
Total loss				54.03		

Table 2
The IR frequencies for the starting precursors, of the LiCoO₂ precursor gel and thermally treated at 700 °C

$\nu (\text{cm}^{-1})$	Assignment				
LiNO ₃	Co(NO ₃) ₃ ·6H ₂ O	Citric acid	LiCoO ₂ (gel)	LiCoO ₂ (700 °C)	
500			480	440	LiO ₄ tetrahedral
			500	490	
	530		520	530	CoO ₆ octahedral
	620		590	590	
			620	710	
			700		
		880	800		ν –CH ₂ –
			1050		ν C–OH
		1180			ν –COOH
~1350	1330	1370	1370	~1410	v –NO ₃ /adsorbed CO ₂
~1650					Molecular water
2200-2400	2200-2400		2200-2400		CO ₂ in gas phase
3000-3600	3000-3600	3200-3600	3000-3600		Structural OH groups

between 3500 and $3100\,\mathrm{cm}^{-1}$ corresponds to the structural OH groups vibration and the presence of this band in the IR spectrum is normally due to the wet chemical method of preparation used. In the same time the band at \sim 1620 cm⁻¹ can be attributed to the bending mode of the molecular water. The band at \sim 2330 cm⁻¹ can be assigned to the CO₂ in the gas phase physically adsorbed on the material surface. The bond at $\sim 1380 \, \mathrm{cm}^{-1}$ may correspond to the -NO₃ vibration and the presence of this band in the spectrum is due to the precursors employed. The small bands between 3000 and $1800 \,\mathrm{cm}^{-1}$ and between 1300 and $800 \,\mathrm{cm}^{-1}$ correspond to the -CH₂ and -CO groups introduced by the citric acid. These bands are shifted and have lower intensity as compared to the pure citric acid, due to its interaction with Co and Li ions. So, the formation of a complex Li-Co citrate can be supposed. The absorption bands at \sim 530 and 630 cm⁻¹ represent the vibration of condensed octahedral CoO₆ while the vibrations at 480 and 500 cm⁻¹ can be attributed to the tetrahedral LiO₄. 18

The IR spectra of the LiCoO $_2$ as-prepared precursor gel and of the gel thermally treated at 700 $^{\circ}$ C are presented in Fig. 2.

In the spectrum of the material annealed at 700 °C, the vibration bands corresponding to the structural OH groups, molecular water and citric acid disappear and the vibration bands corresponding to CoO_6 octahedra, as well as, the band assigned to LiO_4 tetrahedral are better defined. The band at $\sim 1410\,\text{cm}^{-1}$ corresponds to the symmetric stretching vibration of the adsorbed CO_2 . ¹⁸

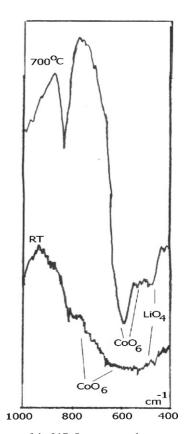


Fig. 2. The IR spectra of the LiCoO $_2$ as-prepared precursor gel and thermally treated at 700 $^{\circ}\text{C}.$

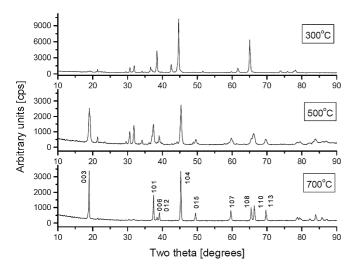


Fig. 3. The XRD patterns of LiCoO $_2$ thermally treated at 300, 500 and 700 $^{\circ}$ C.

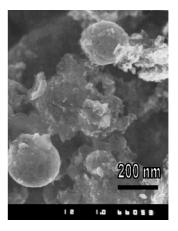
3.3. XRD characterization

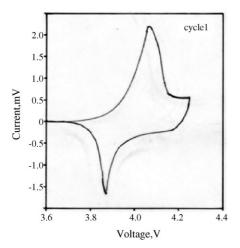
Based on the results of the DTG/TGA analysis that underlined that the main decomposition of the Li–Co citrate complex takes place under 300 °C and having in mind that by sol–gel process reactive nanodispersed powders are obtained, the subsequent thermal treatment was realized step-wise. Three temperatures of thermal treatment of the obtained gel were chosen: 300, 500 and 700 °C for 24 h. The XRD patterns of the thermally treated gels are shown in Fig. 3. From the picture it can be seen that the 300 °C thermal treatment did not lead to the formation of pure layered structure of the sample. Only one of the main peaks (at 104) assigned to LiCoO₂ appeared besides very low crystallized peaks attributed to the Li₂CO₃ formed by complex decomposition. At 500 °C the XR diagram shows that the process of LiCoO₂ crystallization is almost complete but some extra peaks are noticed that belong also to better crystallized Li₂CO₃. In this way a competition between reaction and crystallization of this compound could be noticed. The result indicates that the temperature of thermal treatment at 500 °C for 24 h was not sufficient for LiCoO₂ single phase formation. When thermal treatment of 24 h and 700 °C is applied the XRD patterns show that the sample becomes almost pure layered LiCoO₂ phase.

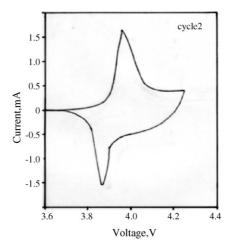
Starting from sol–gel process it was assumed to diminish the synthesis temperature of LiCoO $_2$ and to improve the crystallinity of the sample, because a higher crystallinity is very important for the good electrochemical behavior. ¹⁹ The impurities detected by the XRD even at the selected thermal treatment temperatures do not influence the electrochemistry of the sample but indicate that an additional annealing for 24 h at 800 $^{\circ}$ C is necessary to be checked.

3.4. SEM results

Previously obtained 20 SEM picture of the LiCoO₂ powder obtained in the experimental conditions presented above, thermally treated at 700 $^{\circ}$ C, is shown in Fig. 4. The sample consists of aggregates of about 200 nm formed of particles of much lower dimensions of nanometric size.




Fig. 4. Scanning electron micrograph of the obtained LiCoO₂ sample.


3.5. Electrochemical characterization

The electrochemical tests have been performed in a threeelectrode glass cell with floating electrode or three-electrode metal cell. The advantages of both constructions are already discussed in the literature. 17,19 The electrochemical tests have been started with slow voltammetric measurements of LiCoO2 prepared by the new method presented in Fig. 5. The first cycle shows delithiation peak at about 4.08 V and the lithiation peak is at about 3.86 V. The voltage values of the first delithiation and lithiation peaks are typical for this active material. It seems that the first delithiation peak is not a single peak. According to the literature²¹ it consists of three different close to each other peaks. The fit analysis gave the peak values of 3.99, 4.07 and 4.15 V respectively. These values are similar to the ones reported by other authors.²¹ The voltage values of the delithiation and lithiation peaks of the second cycle are 3.975 and 3.86 V, respectively. The voltage value of the second delithiation peak drops, comparing to that from the first cycle. This polarisation drop most probably is due to the re-ordering of the structure after first lithiation. This process continues during the second cycle because the voltage value of the third delithiation peak is 3.96 V while the value of the lithiation peak is really the same -3.86 V.

The calculated specific capacity of the lithium cobaltite during first delithiation is $155 \, \text{mAh} \, \text{g}^{-1}$ while the specific capacity during lithiation is $112 \, \text{mAh} \, \text{g}^{-1}$ for the same cycle. The difference between the specific capacities on the first cycle is $43 \, \text{mAh} \, \text{g}^{-1}$, which is comparatively the same to that obtained at C/5 rate. The delithiation specific capacity is $113 \, \text{mAh} \, \text{g}^{-1}$ and the lithiation specific capacity is $105 \, \text{mAh} \, \text{g}^{-1}$ on the second cycle. The relatively low specific capacity and not so good reversibility could be explained by the rather low synthesis temperature ($700\,^{\circ}\text{C}$) that does not allow to obtain lithium cobaltite with well ordered structure.

Typical charge–discharge curves of the $LiCoO_2$ investigated samples are presented in Fig. 6. The charge and the discharge are effectuated with relatively high current rate of 0.2 C (5 h). In this case the charge–discharge capacity of the sample is illustrated in Fig. 4. It can be seen that the capacity at the first charge is $155 \, \text{mAh g}^{-1}$, value very close to the capacity recorded on the slow voltammetric test (SVT). This result confirm that

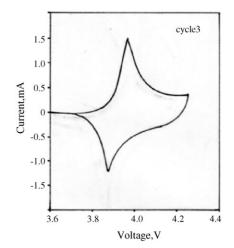


Fig. 5. Cyclic voltammograms of LiCoO $_2$ electrode at $30\,\mu\text{V}\,\text{s}^{-1}$ scan rate.

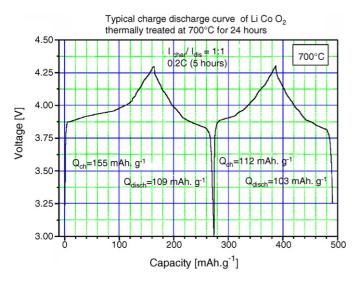


Fig. 6. The charge–discharge profile of lithium cobaltite with the charge and discharge capacities at the first and second cycle.

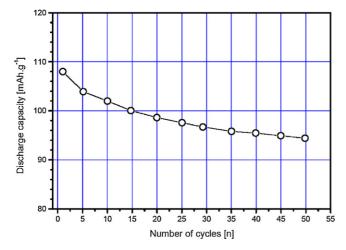


Fig. 7. Long term cycling of sol–gel $LiCoO_2$ sample tested in real coin cell CR2032.

the sample work without diffusion limitation. The displayed discharge capacity is relatively low only $109 \,\mathrm{mAh}\,\mathrm{g}^{-1}$, but again very close to the data pointed out from the SVT. From the second charge discharge curves presented in Fig. 6 the displayed capacities are more reasonable $112 \,\mathrm{mAh}\,\mathrm{g}^{-1}$ for charge and $103 \,\mathrm{mAh}\,\mathrm{g}^{-1}$ for discharge. The obtained values are in some extent lower as compared with the results reported by other authors. 21

The long term cycling of the $LiCoO_2$ sample is presented in Fig. 7 It can be seen from the picture that the test sample deliver the capacity of $109 \, \text{mAh g}^{-1}$ at the 1st cycle $102 \, \text{mAh g}^{-1}$ at the 10th cycle and more than $95 \, \text{mAh g}^{-1}$ at the 50th cycle. The results are satisfactory and show the potential for improvement.

4. Conclusions

The prepared lithium cobaltite according to the above described method exhibit interesting electrochemical properties.

Based on the developed in IPC-RAS method allow the formation of active electrode materials as thin films on an appropriate substrate.

Relatively good electrochemical performances of thus obtained active electrode material confirm that the LiCoO₂ thus obtained can be used as cathode in solid-state batteries.

Acknowledgments

This work was partially supported by EC contract NNE-5-2002-00018, *Center of Excellence*, by the Bulgarian Science Foundation contract X-1323/2003 and by the bilateral contract between IEES-BAS and IPC-RAS.

References

- Yoon, W. S., Lee, K. K. and Kim, K. B., Structural and electrochemical properties of LiAl_yCo_{1-y}O₂ cathode for Li rechargeable batteries. *J. Electrochem. Soc.*, 2000, 147(6), 2023–2028.
- Obrovac, M. N., Mao, O. and Dahn, J. R., Structure and electrochemistry of LiMO₂ (M = Ti, Mn, Fe, Co, Ni) prepared by mecanochemical synthesis. *Solid State Ionics*, 1998, 112, 9–19.

- Fey, G. T. and Huang, D. L., Synthesis, characterization and cell performance on inverse spinel electrode materials for lithium secondary batteries. *Electrochim. Acta*, 1999, 45, 295–314.
- Wang, H., Jang, Y. I., Huang, B., Sadoway, D. R. and Chiang, Y. M., TEM study of electrochemical cycling-induced damage and disorder in LiCoO₂ cathodes for rechargeable lithium batteries. *J. Electrochem. Soc.*, 1999, 146, 473–480.
- Brinker, C. J. and Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, San Diego, 1990.
- Fey, G. T. K., Chen, K. S., Hwang, B. J. and Lin, Y. L., High-resolution images of ultrafine LiCoO₂ powders synthetized by a sol–gel process. *J. Power Sources*, 1997, 68, 519–523.
- Quinlan, F. T., Vidu, R., Predoana, L., Zaharescu, M., Gartner, M., Groza, J. et al., Lithium cobalt oxide (LiCoO₂) nanocoatings by sol–gel methods. Ind. Eng. Chem. Res., 2004, 43, 2468–2477.
- Szatvanyi, A., Crisan, M., Crisan, D., Jitianu, A., Stanciu, L. and Zaharescu, M., LiCoO₂ powders prepared by sol–gel method. *Rev. Rom. Chim.*, 2002, 47(12), 1255–1259.
- Yazami, R., Lebrun, N., Bonneau, M. and Molteni, M., High performance LiCoO₂ positive electrode material. *J. Power Sources*, 1995, 54, 389–392.
- Yoon, W. S. and Kim, K. B., Synthesis of LiCoO₂ using acrylic acid and its electrochemical properties for Li secondary batteries. *J. Power Sources*, 1999, 81/82, 517–523.
- Shlyakhtin, O. A., Yoon, Y. S. and Oh, Y. J., Particle size control of LiCoO₂ powders by powder engineering methods. *J. Eur. Ceram. Soc.*, 2003, 23(11), 1893–1899.
- 12. Cho, J., Kim, G. B., Lim, H. S., Kim, C. S. and Yoo, S. I., Improvement of structural stability of LiMn₂O₄ cathode material on 55 °C cycling by sol–gel coating of LiCoO₂. *Electrochem. Solid State Lett.*, 1999, 2(12), 607–609.

- Zhecheva, E., Stoyanova, R., Gorova, M., Alcantara, R., Morales, J. and Tirado, J. L., Lithium-cobalt citrate precursors in the preparation of intercalation electrode materials. *Chem. Mater.*, 1996, 8, 1429–1440.
- Kang, S. G., Kang, S. Y., Ryu, K. S. and Chang, S. H., Electrochemical and structural properties of HT-LiCoO₂ and LT-LiCoO₂ prepared by the citrate sol–gel method. *Solid State Ionics*, 1999, 120, 155–161.
- Kushida, K. and Kuriyama, K., Sol-gel growth of LiCoO₂ films on Si substrates by a spin-coating method. *J. Cryst. Growth*, 2002, 237–239, 612–615.
- Uchihida, I., Fujiyoshi, H. and Waki, S., Microvoltametric studies on single particles of battery active materials. *J. Power Sources*, 1997, 68, 139– 144
- 17. Bard, A. J. and Faulkner, L. R., *Electrochemical Methods, Fundamentals and Applications (2nd ed.)*. John Wiley & Sons Inc., New York, 2000.
- Rao, K. J., Benqlilou-Moudden, H., Desbat, B., Vinatier, P. and Levasseur, A., Infrared spectroscopic study of LiCoO₂ thin film. *J. Solid State Chem.*, 2002, 165, 42–47.
- Wang, H., Jang, Y., Huang, B., Sadoway, D. and Chiang, Y. M., TEM study of electrochemical cycling-induced damage and disorder in LiCoO₂ cathodes for rechargeable lithium batteries. *J. Electrochem. Soc.*, 1999, **146**, 473– 480.
- Vasilchina, H., Aleksandrova, A., Momchilov, A., Banov, B., Predoana, L., Barau, A. et al., Spherical graphite as anode in high efficient lithium batteries. In Proceedings of the International Workshop "Potable and Emergency Energy Source—From Materials to Systems", 2005, pp. P4-1–P4-6.
- Shim, Y. B., Jeong, E. D. and Won, M. S., Preparation of LiCoO₂ using humic acid and its cathodic properties for lithium-ion secondary battery. *Electrochem. Soc. Proc.*, 1997, 18, 252–263.