

Journal of the European Ceramic Society 27 (2007) 1077–1082

www.elsevier.com/locate/jeurceramsoc

Effects of MgO coating on microstructure and dielectric properties of BaTiO₃

Jae Sung Park, Young Ho Han*

Department of Materials Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea Available online 3 July 2006

Abstract

Effects of MgO coating on microstructure and dielectric properties of BaTiO₃ have been studied compared with mechanically MgO mixed BaTiO₃. MgO-coated BaTiO₃ particles were prepared by a homogeneous precipitation method using MgCl₂·6H₂O and urea. TEM micrograph showed homogeneous adsorption of MgO particles on the BaTiO₃ surfaces. MgO coated and mixed samples showed different dielectric behaviors because uniformity of microstructures and shape of core-shell structure were different each other. Bulk density was slightly decreased with increasing MgO content. EPMA analysis indicates that microstructures and dielectric behaviors were affected by the distribution of MgO in the BaTiO₃ matrix. © 2006 Elsevier Ltd. All rights reserved.

Keywords: BaTiO3; Coating; Dielectric properties; Mixing; MgO

1. Introduction

Magnesium oxide is one of the basic doping materials in BaTiO₃-based multilayer ceramic capacitors (MLCCs). Moreover, MgO together with rare earth oxides are widely used to achieve an X7R specification (X7R: the dielectric constant value at 25 °C changes by not more than ±15% in the temperature range from -55 to 125 °C) with a core-shell structure. Hag ion is known to be substituted for Ti site in BaTiO₃ system and also reported to play an important role in inhibiting the grain growth of BaTiO₃. Numerous works have been conducted to confirm the co-doping effects of rare earth oxides on the microstructure and electrical properties of BaTiO₃–MgO-based system. However, there are only few works concerned with the properties of MgO singly doped BaTiO₃ system. Hago-based system.

Core-shell microstructures are usually obtained by admixing small amounts of several oxide additives to BaTiO₃ powders. Currently, oxide additives are mechanically mixed with the BaTiO₃ powder, but the distribution of additives in BaTiO₃ powders becomes critical since the additives are coarse and very small in amount. As the BaTiO₃ particle size is getting smaller, the uniform distribution of additives is more difficult. There-

fore, various chemical techniques such as sol–gel, ^{12,13} hetero-coagulation ^{14–16} and homogeneous precipitation coating ^{17,18} have been proposed to maximize the homogeneous distribution of additives.

In this study, the microstructure and dielectric properties of MgO-coated BaTiO₃ through the precipitation coating were studied and compared with those prepared by a conventional mixing method.

2. Experimental procedure

BaTiO₃ (Sakai BT-04) mixed with reagent grade MgO was prepared by a conventional ceramic processing technique. The ingredient raw materials were mixed in a ball mill and then dried in an oven. The amount of MgO addition was 0.5, 1.0, 2.0 and 3.0 mol%. MgO-coated BaTiO₃ with the same composition as those mixed ones was prepared by a homogeneous precipitation method using reagent grade MgCl₂·6H₂O, and urea (NH₂CONH₂). All solutions and suspensions were prepared in aqueous solution. BaTiO₃ particles were suspended in distilled water and Mg solutions were added to the suspension with 1 M concentration urea and dispersant. The suspension system was magnetically stirred at room temperature and 80 °C for 1 and 2 h, respectively. After stirring, the dispersion was aged at 90 °C for 12 h and calcination was conducted at 700 °C. The powders were pulverized into fine particles and formed into a disk shape under a uniaxial pressure of 200 MPa. The specimens

^{*} Corresponding author. Tel.: +82 31 290 7392; fax: +82 31 290 7410. E-mail address: yhhan@skku.ac.kr (Y.H. Han).

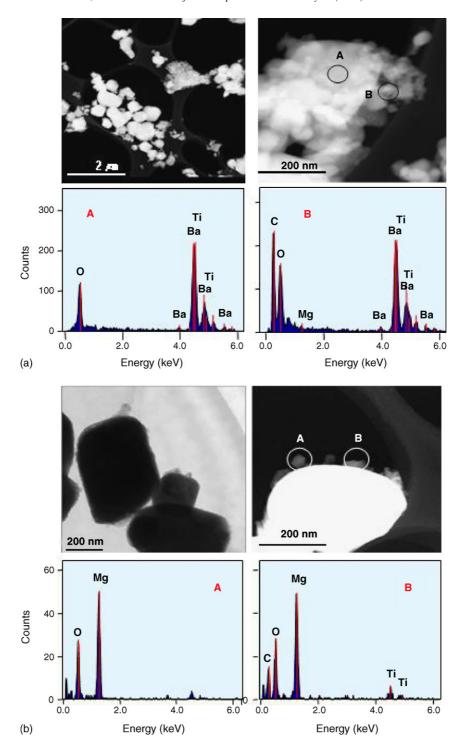


Fig. 1. TEM images and EDS analysis of 3.0 mol% MgO doped BaTiO₃ powder. (a) MgO mixing, (b) MgO coating.

were then sintered at 1320 °C for 2 h in air. Powder morphology and core-shell structure were characterized by a transmission electron microscopy with energy dispersive spectroscope (TEM, Jeol-300 kV). The dielectric constant was measured over a temperature range from -55 to 150 °C using the capacitance measurement system (Saunders & Associate) with an LCR meter (HP4284A). Thermally etched surfaces of sintered specimens were investigated using a scanning electron microscope (SEM, Hitachi- S2150). X-ray diffraction patterns were obtained using

an automated diffractometer (Rigaku Rotaflex D/MAX System) with $CuK\alpha$ radiation.

3. Results and discussion

Fig. 1 shows TEM image of MgO mixed and coated BaTiO₃ and chemistry of specified areas by energy dispersive spectroscopy (EDS). MgO-coated BaTiO₃ powder confirmed that BaTiO₃ surface was covered with MgO particles, whereas MgO

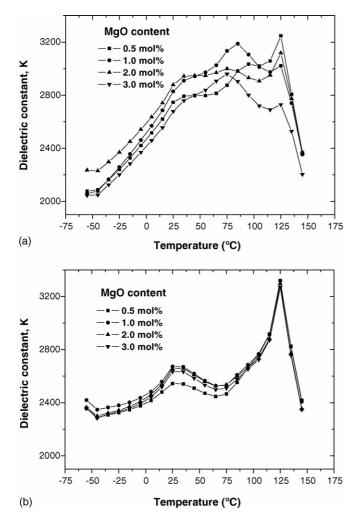


Fig. 2. Dielectric constants of MgO-doped BaTiO₃ with various MgO contents. (a) MgO mixing, (b) MgO coating.

mixed BaTiO₃ included inhomogeneous distributions of MgO. This uniform coating of MgO on BaTiO₃ could be caused by decomposition of urea and surface reaction between BaTiO₃ and MgO precursor.

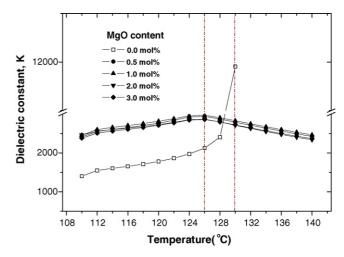


Fig. 3. Dielectric constants of MgO-coated BaTiO3 with various MgO contents.

Urea is hydrolyzed according to the following reaction: 19

$$(NH_2)_2CO + 3H_2O \rightarrow CO_2 + 2NH_3 + 2H_2O$$
 (1)

The decomposition of urea on the heating of solution released ammonia and carbon dioxide. Ammonium ions gradually and uniformly increase pH of the solution and induce the precipitation of Mg hydroxides. The precursor of magnesium hydroxide would be precipitated through the hydrolysis reaction of urea, the uniform precipitation of Mg precursors in the presence of BaTiO₃ particles leading to the hetero-coagulation which produced homogeneous distribution of MgO particles on the BaTiO₃ surface.

Fig. 2 shows the changes in dielectric constants of MgO mixed and coated BaTiO₃ as a function of MgO content over the temperature range from -55 to $150\,^{\circ}$ C. A significant difference was observed in dielectric behaviors between MgO mixed and coated samples although the maximum dielectric constants of both specimens were about 3200. In the case of MgO mixed specimen, the dielectric constant at the Curie temperature was decreased with increasing MgO content, but any consistent tendency was not observed between the Curie temperatures and

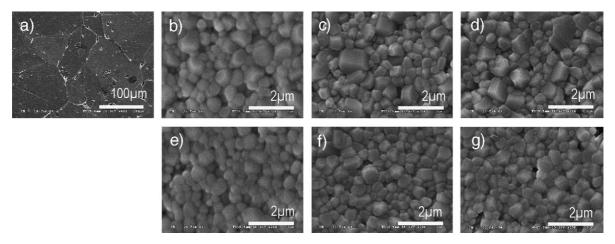


Fig. 4. Microstructures of MgO mixed (b-d) and coated (e-g) BaTiO₃ with various MgO contents sintered at $1320\,^{\circ}$ C. (a) $0.0\,\text{mol}\%$, (b, e) $0.5\,\text{mol}\%$, (c, f) $1.0\,\text{mol}\%$ and (d, g) $3.0\,\text{mol}\%$.

MgO contents. In contrast with the MgO mixed case, dielectric behaviors of MgO-coated specimens were quite similar to each other over the temperature range measured only except that dielectric constants of the specimens with greater than 0.5 mol% MgO were slightly higher than that of 0.5 mol% MgO sample around room temperature. Plessner et al.⁸ studied the effect of magnesia on BaTiO₃ permittivity that the Curie temperature shifted to lower temperatures by addition of 3.0 mol% MgO $(\Delta T_{\rm C} = -50 \,^{\circ}{\rm C})$, whereas Baxter et al. 9 reported that the temperature of the cubic-tetragonal phase transformation was changed slightly upon MgO addition, $\Delta T_{\rm C} = -3$ °C for 3 mol% MgO. These controversial results are due to the difference in MgO dispersion degree which depends on experimental procedure. However, it is difficult to compare exactly two results because a full explanation for mixing process in their experiments was not given.

Fig. 3 shows dielectric constants of MgO-coated BaTiO₃ with various MgO contents over the temperature range from 110 to 140 °C. The Curie temperature of un-doped BaTiO₃ was observed at 130 °C and those of MgO coated specimens were observed at 126 °C regardless of MgO contents. This result is similar to the studies of MgO-doped BaTiO₃ by Baxter.⁹ It was also confirmed that MgO additions effectively suppress the dielectric constants at the Curie temperature, which could make MgO an essential additive to stabilize TCC curves in X7R type MLCC manufacturing.

Fig. 4 shows microstructures of MgO mixed and coated samples with various MgO contents. The samples doped with MgO showed small grain sizes about 1 µm, whereas un-doped BaTiO₃ exhibited larger grain sizes (\sim 50 μ m). Sakabe et al. reported that MgO was detected in the grain boundary region of $(Ba_{1-x}Ca_x)_m$ TiO₃–MgO–SiO₂, which might act as a grain growth inhibitor.²⁰ Thus, small grain size in MgO-BaTiO₃ system might be due to barriers such as the secondary phases or the excess MgO existing in the grain boundary. The second phases related to MgO were not detected in the XRD profile of the specimens because the amount of excess MgO was too small to be detected by XRD analysis. Microstructures of MgO mixed specimens were less uniform than coated ones with an irregular shape of grains. The difference in microstructures between MgO mixed and coated specimens could be responsible for dielectric properties shown in Fig. 2.

Temperature characteristics of dielectric constants depend on metastable grain core-shell structures. The grain core indicates the center region of the grain, representing the ferroelectric domain structure, and the grain shell is the outer region having a concentration gradient of additive oxides from the grain boundary toward the grain core. To explain the dielectric properties of the mixed composite, several models have been proposed and investigated. The average dielectric constant is written by Lichtenecker's equation: Lichtenecker's e

$$\log K = V_{\rm c} \log K_{\rm c} + V_{\rm s} \log K_{\rm s} \tag{2}$$

where K_c and K_s represent the dielectric constants of the core (undoped BaTiO₃) and shell (MgO doped) phase respectively, V_c and V_s are the volume fractions of core and shell phase. It

is assumed that mixed MgO could not homogeneously disperse in BaTiO₃ so that the quantity of grains composed of core-shell structure was limited. On the contrary, it is obvious that MgO-coated BaTiO₃ have thinner and more homogeneous shell structure than MgO mixed BaTiO₃ in each grain because MgO was distributed uniformly in BaTiO₃ grain boundaries. Thus, MgO-coated specimens show higher dielectric constants at the Curie temperature of inherent ferroelectric BaTiO₃, whereas MgO mixed specimens exhibit higher dielectric constants between 60 and 80 °C due to the inhomogeneous core-shell structures. The inhomogeneous distribution of MgO leads to a substantially localized penetration of Mg ions into the core area, resulting in

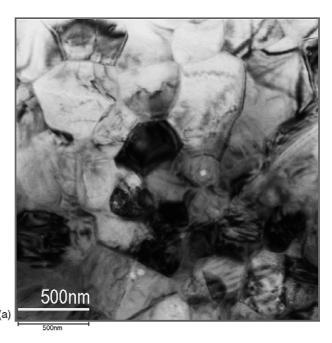


Fig. 5. TEM images of $3.0 \,\mathrm{mol}\%$ MgO-doped BaTiO₃ samples sintered at $1320\,^{\circ}\mathrm{C}$. (a) MgO mixing, (b) MgO coating.

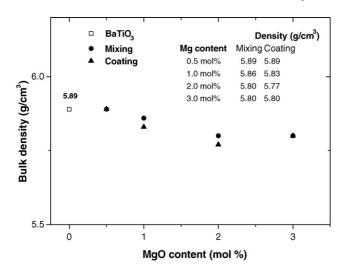


Fig. 6. Apparent density of MgO-doped BaTiO₃ as a function of various MgO contents.

the heavily MgO-doped shell structure and the shift of Curie point to lower temperatures.

Fig. 5 shows TEM images of 3.0 mol% MgO coated and mixed BaTiO₃ samples after sintering. Core-shell structure of MgO-coated specimen looks more obvious than that of mixed sample, and the MgO-coated sample exhibits homogeneous and narrow shell regions. This result is compatible with the dielectric behaviors shown in Fig. 2.

Fig. 6 shows bulk density of the MgO mixed and coated samples as a function of MgO content. The density of both mixed and coated specimens was decreased with increasing MgO contents. This is similar to the previous study of MgO doped BaTiO₃. ²⁵ Excess MgO is assumed to exist in the grain boundary region and suppresses the grain growth, resulting in poor densification. Fig. 7 shows EPMA analysis of 3.0 mol% MgO mixed and coated samples after binder burned out. Localized bright areas with high concentration of MgO were observed in the mixed sample, whereas MgO was homogeneously distributed in the coated sample. This result implies that the inhomogeneous presence of MgO in the mixed sample gave rise to the irregular core-shell shape and microstructure.

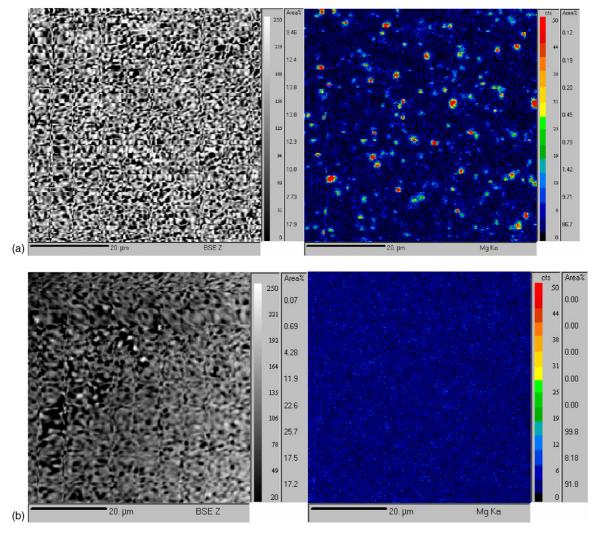


Fig. 7. EPMA analysis of 3.0 mol% MgO-doped BaTiO₃ after binder burned out (a) MgO mixing, (b) MgO coating.

4. Conclusions

MgO-coated BaTiO₃ particle was prepared from BaTiO₃ powders and MgCl₂·6H₂O by a homogeneous precipitation method using urea. MgO mixed and coated sample gave different dielectric behaviors at the same MgO content and sintering condition. The different physical properties are due to MgO distribution, leading to the different microstructure and core-shell structure. The inhomogeneous distribution of MgO leads to a substantially localized penetration of Mg ions into the core area, resulting in the heavily MgO-doped shell structure and the shift of Curie point to lower temperatures. Coating method can effectively improve the distribution of MgO in BaTiO₃ matrix and provide homogeneous microstructures.

Acknowledgement

This research was supported by a grant from the Center for Advanced Materials Processing (CAMP) of the 21st Century Frontier R&D, Republic of Korea.

References

- Sakabe, Y., Dielectric materials for base-metal multilayer ceramic capacitors. Ceram. Bull., 1987, 66, 1338–1341.
- Okino, Y., Shizuno, H., Kusumi, S. and Kishi, H., Dielectric properties of rare-earth-oxide-doped BaTiO₃ ceramics fired in reducing atmosphere. *Jpn. J. Appl. Phys.*, 1994, 33, 5393–5396.
- Saito, H., Chazono, H., Kishi, H. and Yamaoka, N., X7R multilayer ceramic capacitors with nickel electrodes. *Jpn. J. Appl. Phys.*, 1991, 30, 2307–2310.
- Hwang, J. H., Choi, S. K. and Han, Y. H., Dielectric properties of BaTiO₃ co-doped with Er₂O₃ and MgO. *Jpn. J. Appl. Phys.*, 2001, 40, 4952–4955.
- Kishi, H., Kohzu, N., Sugino, J., Ohsato, H., Iguchi, Y. and Okuda, T., The effect of rare-earth (La, Sm, Dy, Ho and Er) and Mg on the microstructure in BaTiO₃. Eur. Ceram. Soc., 1999, 19, 1043–1046.
- 6. Kishi, H., Kohzu, N., Mizuno, Y., Iguchi, Y., Sugino, J., Ohsato, H. *et al.*, Effect of occupational sites of rare-earth elements on the microstructure in BaTiO₃. *Jpn. J. Appl. Phys.*, 1999, **38**, 5452–5456.
- Kirianov, A., Hagiwara, T., Kishi, H. and Ohsato, H., Effect of Ho/Mg ratio on formation of core-shell structure in BaTiO₃ and on dielectric properties of BaTiO₃ Ceramics. *Jpn. J. Appl. Phys.*, 2002, 41, 6934–6937.

- Plessner, K. W. and West, R., The effect of small additions of magnesia on some high-permittivity ceramics based barium titanate. *J. Electron. Control*, 1958, 4, 51–57.
- Baxter, P., Hellicar, N. J. and Lewis, B., Effect of additives of limited solid solubility on ferroelectric properties of barium titanate ceramics. *J. Am. Ceram. Soc.*, 1959, 42, 465–470.
- Nagai, T., Iijima, K., Hwang, H. J., Sando, M., Sekino, T. and Niihara, K., Effect of MgO doping on the phase transformations of BaTiO₃. Am. Ceram. Soc., 2000, 83, 107–112.
- 11. Jeong, J. and Han, Y. H., Electrical properties of MgO-doped BaTiO₃. *Phys. Chem. Chem. Phys.*, 2003, **5**, 2264–2267.
- Selmi, F. A. and Amarakoon, V. R. W., Sol–gel coating powders for processing electronic ceramics. Am. Ceram. Soc., 1988, 71, 934–937.
- 13. Shih, W.-H., Kisailus, D. and Wei, Y., Silica coating on barium titanate particles. *Mater. Lett.*, 1995, **24**, 13–15.
- Harding, R. D., Heterocoagulation in mixed dispersions-effect of particle size, size ratio, relative concentration, and surface potential of colloid components. J. Colloid. Interface Sci., 1972, 40, 164–173.
- Healy, T. W., Wiese, G. R., Yates, D. W. and Kavangh, B. V., Heterocoagulation in mixed oxide colloidal dispersions. *J. Colloid. Interface Sci.*, 1973, 3, 647–649.
- Jean, J. H. and Yang, S. M., Y₂O₂S:Eu red phosphor powders coated with silica. J. Am. Ceram. Soc., 2000, 83, 1928–1934.
- Kim, B. K. and Yasui, I., Synthesis of hydrous SnO₂ and SnO₂-coated TiO₂ powders by the homogeneous precipitation method and their characterization. *J. Mater. Sci.*, 1988, 23, 637–642.
- Aiken, B., Hsu, W. P. and Matijevic, E., Preparation and properties of uniform mixed and coated colloid particles. *J. Mater. Sci.*, 1990, 25, 1886–1894.
- Boschini, F., Robertz, B., Rulmont, A. and Cloots, R., Preparation of nanosized barium zirconate powder by thermal decomposition of urea in an aqueous solution containing barium and zirconium, and calcinations of the precipitate. *J. Eur. Ceram. Soc.*, 2003, 23, 3035–3042.
- Sakabe, Y., Wada, N., Hiramatsu, T. and Tonogaki, T., Dielectric properties
 of fine-grained BaTiO₃ ceramics doped with CaO. *Jpn. J. Appl. Phys.*, 2002,
 41, 6922–6925.
- Rawal, B. S., Kahn, M. and Buessem, W. R., Grain core-grain shell structure in barium titanate-based dielectrics. *Adv. Ceram.*, 1981, 1, 172–187.
- 22. Hennings, D. and Rosenstein, G., Temperature-stable based chemically inhomogeneous BaTiO₃. *J. Am. Ceram. Soc.*, 1984, **67**, 249–254.
- Kingery, W. D., Bowen, H. K. and Uhlmann, D. R., Introduction to ceramics (2nd ed.). Wiley, New York, 1976.
- Payne, D. A. and Cross, L. E., In *Microstructure-property relations for dielectric ceramics: ceramic microstructure*, ed. R. M. Fulrath and J. A. Park. Westview Press, Boulder, 1977.
- 25. Jeong, J. and Han, Y. H., Effects of MgO-doping on electrical properties and microstructure of BaTiO₃. *Jpn. J. Appl. Phys.*, 2004, **43**, 5373–5377.