

Journal of the European Ceramic Society 27 (2007) 1053-1058

www.elsevier.com/locate/jeurceramsoc

Low temperature sintering of BaO–Sm₂O₃–4TiO₂ ceramics

Kyung-Hoon Cho^a, Jong-Bong Lim^a, Sahn Nahm^{a,*}, Hyo-Tae Kim^b, Jong-Hee Kim^b, Jong-Hoo Paik^b, Hwack-Joo Lee^c

a Department of Materials Science and Engineering, Korea University, 1-5 Ka, Anam Dong, Sungbuk-Ku, Seoul 136-701, Republic of Korea ^b Korea Institute of Ceramic Engineering and Technology, 233-5, Gasan-Dong, Guemcheon-Gu, Seoul 153-801, Republic of Korea c New Materials Evaluation Center, Korea Research Institute of Standards and Science, Daeduk Science Town, Taejon 305-600, Republic of Korea

Available online 13 June 2006

Abstract

The effect of B₂O₃ and CuO on the sintering temperature and microwave dielectric properties of BaSm₂Ti₄O₁₂ ceramics was investigated. The BaSm₂Ti₄O₁₂ ceramics were able to be sintered at 1000 °C when B₂O₃ was added. This decrease in the sintering temperature of the BaSm₂Ti₄O₁₂ ceramics upon the addition of B_2O_3 is attributed to the BaB_4O_7 second phase, whose melting temperature is around 900 °C. The B_2O_3 added BaSm₂Ti₄O₁₂ ceramics alone were not able to be sintered below 1000 °C, but were sintered at 875 °C when CuO was added. BaCu(B₂O₅) second phase might be responsible for the decrease in the sintering temperature of the CuO and B2O3 added BaSm2Ti4O12 ceramics. The BaSm₂Ti₄O₁₂ + 10.0 mol% B₂O₃ + 20.0 mol% CuO ceramics sintered at 875 °C for 2 h have good microwave dielectric properties of ε_r = 61.47, $Q \times f = 4256 \,\text{GHz}$ and $\tau_f = -9.25 \,\text{ppm/}^{\circ}\text{C}$. The BaCu(B₂O₅) is also a good additive for decreasing the sintering temperature of the BaSm₂Ti₄O₁₂ ceramics.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Sintering; Microstructure; Dielectric properties

1. Introduction

The miniaturization and hybridization of microwave dielectric components are required for the development of mobile telecommunication systems, and various multi-layer devices have been extensively investigated in an attempt to satisfy these requirements. Multi-layer devices consist of alternating microwave dielectric ceramics and internal metallic electrode layers. Ag has been widely used as the metallic electrode, because of its high conductivity and low cost. However, the melting temperature of Ag is low, about 961 °C, whereas the sintering temperature of the microwave dielectric ceramics is generally above 1400 °C. Therefore, for the fabrication of multilayer devices, it is necessary to develop microwave dielectric ceramics with a low sintering temperature, which can be cofired with Ag.

BaO-Sm₂O₃-TiO₂ ceramics, consisting of two ternary phases, viz. BaO-Sm₂O₃-5TiO₂ and BaO-Sm₂O₃-3TiO₂, were first reported by Ouchi and co-workers and the crystal structure of these phases was identified as a tungsten-bronze type structure.^{2–4} In particular, BaSm₂Ti₄O₁₂ ceramics show good microwave dielectric properties of Q = 2289 at 3.6 GHz and $\varepsilon_r = 78.91.^5$ However, the sintering temperature of this ceramic is relatively high, being approximately 1350 °C. Therefore, it is necessary to decrease sintering temperature for the application to LTCC technology. In a previous work, B₂O₃/Ge₂O₂ and Bi₂O₃/MnO₂ were used to reduce the sintering temperature of $Ba_{6-3x}R_{8+2x}Ti_{18}O_{54}$ (where R = Sm, Nd, Pr or La) and [(Pb, Ca)La](Fe, Nb)O₃ ceramics, respectively, however their sintering temperatures were still too high for Ag metal to be used as an electrode.^{6,7} Recently, many types of glasses were used to decrease the sintering temperature of BaNd₂Ti₄O₁₂ ceramics. 8-10 However, the microwave dielectric properties of the resulting ceramics were not satisfactory, because the addition of glass usually degraded their microwave dielectric properties.

In previous studies, the addition of a small amount of B₂O₃ and CuO was found to reduce the sintering temperature of $Ba(Zn_{1/3}Ta_{2/3})O_3$, and $Ba(Zn_{1/3}Nb_{2/3})O_3$ ceramics to below 900 °C. 11,12 Therefore, it is also possible that these B2O3 and CuO additives would be effective in decreasing the sintering temperature of the BaSm₂Ti₄O₁₂ ceramics. In this work, small amounts of B₂O₃ and CuO additives were used to decrease the

Corresponding author. Tel.: +82 2 3290 3279; fax: +82 2 928 3584. E-mail address: snahm@korea.ac.kr (S. Nahm).

sintering temperature of BaSm₂Ti₄O₁₂ ceramics and the variations in the microwave dielectric properties of these ceramics were investigated in terms of their microstructure.

2. Experimental procedure

BaCO₃, Sm₂O₃ and TiO₂ (High Purity Chemicals, >99%, Japan) were mixed in a nylon jar with zirconia balls for 24 h, and then dried and calcined at 1100 °C for 3 h. After remilling with the B₂O₃ and CuO (High purity Chemicals, >99%) additives, the powder was dried, pressed into discs and sintered at 875–1000 °C for 2 h. The microstructure of the specimens was studied using X-ray diffraction (Rigaku D/max-RC, Japan), scanning electron microscopy (SEM; Hitachi S-4300, Japan) and transmission electron microscopy (TEM; Hitachi H-9000NAR Ibaraki, Japan). The densities of the sintered specimens were measured by a water-immersion technique. The dielectric properties in the microwave frequency range were measured by a dielectric post resonator technique suggested by Hakki and Coleman¹³ and Courtney. ¹⁴ The temperature coefficients of the resonant frequency was measured in the temperature range of 25-80 °C.

3. Results and discussion

The normal sintering temperature of the $BaSm_2Ti_4O_{12}$ ceramics is approximately $1350\,^{\circ}C$, however they were able to be sintered at $1000\,^{\circ}C$ when B_2O_3 was added. Fig. 1 shows the X-ray diffraction patterns of $BaSm_2Ti_4O_{12}$ ceramics calcined at $1150\,^{\circ}C$ for 3 h and the $BaSm_2Ti_4O_{12} + xB_2O_3$ ceramics with $10.0 \le x \le 50.0 \, \text{mol}\%$ sintered at $1000\,^{\circ}C$ for 2 h. All of the peaks were indexed as those of the $BaSm_2Ti_4O_{12}$ phase with lattice parameters of $a = 2.23 \, \text{nm}$, $b = 1.21 \, \text{nm}$ and $c = 0.38 \, \text{nm}$. Peaks for the BaB_4O_7 second phase, which are indicated by an asterisk, were also observed for the specimens with $x \ge 10.0$. According to the phase diagram, the eutectic temperature of

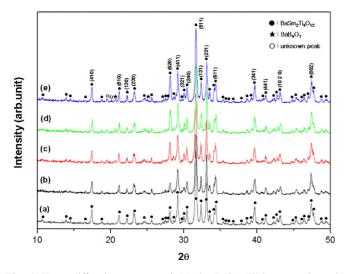


Fig. 1. X-ray diffraction patterns of (a) the $BaSm_2Ti_4O_{12}$ ceramics calcined at $1150\,^{\circ}C$ for 3 h and the $BaSm_2Ti_4O_{12} + xB_2O_3$ ceramics with $10.0 \le x \le 50.0 \, \text{mol}\%$ sintered at $1000\,^{\circ}C$ for 2 h: (b) $x = 10.0 \, \text{mol}\%$, (c) $x = 20.0 \, \text{mol}\%$, (d) $x = 30.0 \, \text{mol}\%$ and (e) $x = 50.0 \, \text{mol}\%$.

the BaB_4O_7 ceramics is approximately $899\,^{\circ}C.^{15}$ Therefore, the BaB_4O_7 phase existed as the liquid phase during the sintering process and assisted in the densification of the $BaSm_2Ti_4O_{12}$ ceramics. The unknown peaks which are indicated by the open circle were also observed and they might be related to the phase which is formed by the decomposition of the $BaSm_2Ti_4O_{12}$ ceramics due to the formation of the BaB_4O_7 phase.

The SEM images of the thermally etched $BaSm_2Ti_4O_{12} + xB_2O_3$ ceramics are shown in Fig. 2(a–c). For the specimen with x = 5.0 mol%, a porous microstructure with an average grain size of $0.2~\mu m$ was developed. A dense microstructure formed in the specimen with x = 10.0 mol%, but the microstructure was degraded when the amount of B_2O_3 exceeded 10.0 mol% as shown in Fig. 2(c). As the B_2O_3 content increased, the amount of liquid phase increased, and this liquid phase could have evaporated during the sintering process. Therefore, the porous microstructure formed in the specimens with a large amount of B_2O_3 might be due to the evaporation of the liquid phase during sintering.

Fig. 3 shows the variations in the relative density, ε_r value and $Q \times f$ value of the B₂O₃ added BaSm₂Ti₄O₁₂ ceramics sintered at 1000 °C for 2 h. The relative density of the specimen with 5.0 mol% of B₂O₃ was approximately 85% of the theoretical density and increased with increasing B2O3 content, showing a maximum value when $x = 10.0 \,\mathrm{mol}\%$. When x exceeded 10.0 mol%, the relative density decreased, and this decrease is attributed to the development of the porous microstructure. The variation in the value of ε_r is similar to that of the relative density and, thus, the density is an important factor in improving the value of ε_r . The Q-value decreased with increasing B₂O₃ content, even though the relative density increased. This decrease in the Q-value might be due to the increase of the BaB₄O₇ second phase. In addition, the decomposition of the BaSm₂Ti₄O₁₂ and the presence of cation deficiency in BaSm₂Ti₄O₁₂ due to the formation of BaB₄O₇ phase can also deteriorate the $Q \times f$ value of the specimens.

The sintering temperature of the BaSm₂Ti₄O₁₂ ceramics was reduced to 1000 °C when B₂O₃ was added. However, the B₂O₃ added BaSm2Ti4O12 ceramics were not able to be sintered below 1000 °C and, thus, it is difficult to use Ag as the electrode for B₂O₃ added BaSm₂Ti₄O₁₂ ceramics. To overcome this difficulty, both CuO and B₂O₃ were added to the BaSm₂Ti₄O₁₂ ceramics, in order to reduce the sintering temperature below 900 °C. When CuO was added to the BaSm₂Ti₄O₁₂ ceramic containing 10.0 mol% B2O3, it was able to be sintered even at 850 °C. Fig. 4 shows the X-ray diffraction patterns of the $BaSm_2Ti_4O_{12} + 10.0 \text{ mol}\%$ $B_2O_3 + xCuO$ ceramics where 5.0 < x < 50.0 mol% sintered at $875 \,^{\circ}\text{C}$ for 2 h. All of the peaks were identified as those of the BaSm₂Ti₄O₁₂ phase. The CuO itself cannot decrease the sintering temperature of BaSm₂Ti₄O₁₂ ceramics below 900 °C, because the CuO added BaSm₂Ti₄O₁₂ ceramics were not sintered below 1050 °C. Fig. 5 shows the TEM high resolution lattice image of the $BaSm_2Ti_4O_{12} + 10.0 \text{ mol}\%$ $B_2O_3 + 20.0 \text{ mol}\%$ CuO ceramics sintered at 875 °C for 2h. The liquid phase existed at the triple point of the BaSm₂Ti₄O₁₂ ceramics. According to a previous work, BaCu(B2O5) second phase, which melts at a

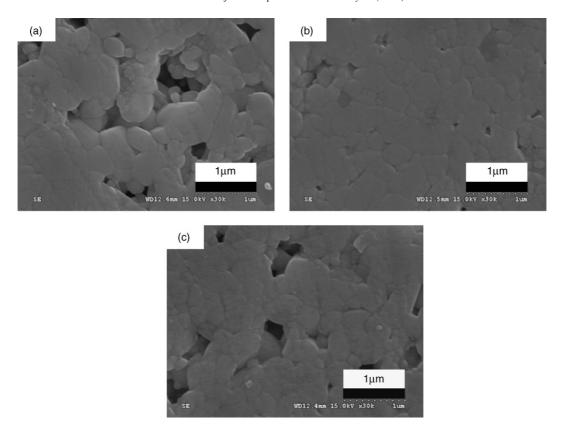


Fig. 2. SEM images of the thermally etched $BaSm_2Ti_4O_{12} + xB_2O_3$ ceramics: (a) x = 5.0 mol%, (b) x = 10.0 mol% and (c) x = 20.0 mol%.

temperature above $800\,^{\circ}\text{C}$, existed in the CuO and B_2O_3 added $Ba(Zn_{1/3}Nb_{2/3})O_3$ ceramics and assisted in the densification at low temperature. The For the $BaSm_2Ti_4O_{12}$ ceramics, even if it is difficult to find the peak for $BaCu(B_2O_5)$ in the X-ray diffraction pattern, it is possible that a small amount of the $BaCu(B_2O_5)$ liquid phase formed as shown in Fig. 5 and assisted in the densification of the $BaSm_2Ti_4O_{12}$ ceramic at low temperature. Furthermore, the $BaSm_2Ti_4O_{12}$ ceramics was well sintered even at $875\,^{\circ}\text{C}$ when a small amount of the $BaCu(B_2O_5)$ additive was added, as will be discussed later. Therefore, it is considered that the $BaCu(B_2O_5)$ second phase is responsible for the densification of the CuO and B_2O_3 added $BaSm_2Ti_4O_{12}$ ceramics

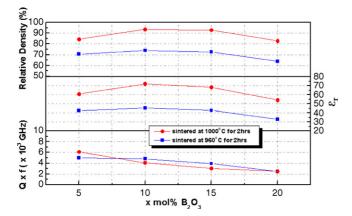


Fig. 3. Variations in the relative density, ε_r value and $Q \times f$ value of the B_2O_3 added $BaSm_2Ti_4O_{12}$ ceramics sintered at $1000\,^{\circ}C$ for 2 h.

at low temperature. In addition, the CuB_8O_{13} phase melts at a temperature above 750 °C. ¹⁶ Therefore, we cannot completely exclude the possibility that the CuO reacted with the B_2O_3 , resulting in the formation of $CuO-B_2O_3$ phase, which assisted in the sintering of the $BaSm_2Ti_4O_{12}$ ceramics below 900 °C.

Fig. 6(a–c) show the SEM images of the thermally etched surfaces of the $BaSm_2Ti_4O_{12} + 10.0 \text{ mol}\%$ $B_2O_3 + xCuO$ ceramics with $5.0 \le x \le 20.0 \text{ mol}\%$ sintered at $875 \,^{\circ}\text{C}$ for 2 h. For the

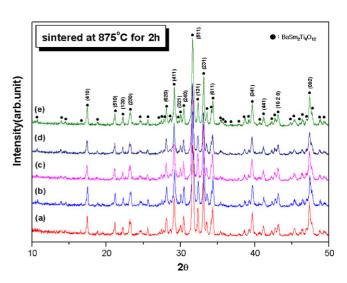


Fig. 4. X-ray diffraction patterns of the BaSm₂Ti₄O₁₂ + 10.0 mol% B₂O₃ + xCuO ceramics where $5.0 \le x \le 50.0$ mol% sintered at 875 °C for 2 h: (a) x = 5.0 mol%, (b) x = 10.0 mol%, (c) x = 20.0 mol%, (d) x = 30.0 mol% and (e) x = 50.0 mol%.

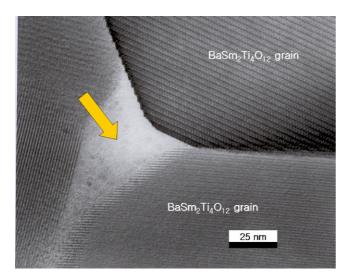


Fig. 5. TEM high resolution lattice image of the $BaSm_2Ti_4O_{12} + 10.0 \, mol\%$ $B_2O_3 + 20.0 \, mol\%$ CuO ceramics sintered at 875 °C for 2 h.

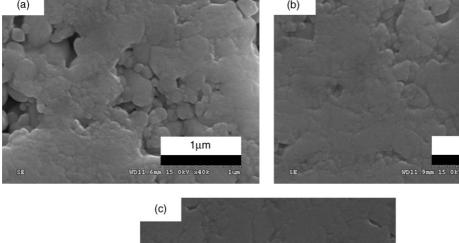

specimen with 5.0 mol% of CuO, a porous microstructure was formed. However, when the CuO content exceeded 10.0 mol%, a dense microstructure developed. Moreover, the microstructure was not degraded when a large amount of CuO was added. Therefore, at least 10.0 mol% of CuO is required to ensure the densification of the $BaSm_2Ti_4O_{12} + 10.0$ mol% B_2O_3 ceramics.

Fig. 7 shows the variations in the absolute density and ε_r value of the BaSm₂Ti₄O₁₂ + 10.0 mol% B₂O₃ + xCuO ceramics

with $5.0 \le x \le 50.0 \,\text{mol}\%$ sintered at various temperatures. For the specimens sintered at 875 °C, the absolute density increased with increasing CuO content and became saturated when the CuO content exceeded 15.0 mol%. The variation in the absolute density could be explained by that of the microstructure as shown in Fig. 6(a-c). A similar result was also obtained for the specimens sintered at 900 °C. For the specimens sintered at 850 °C, the density increased with increasing CuO content, but decreased when x exceeded 20.0 mol%. This decrease in density is not completely understood at the present moment. The ε_r value significantly increased with the addition of a small amount of CuO and became saturated for the specimens with 15.0 mol% added CuO sintered at 875 and 900 °C. In particular, the specimen with a CuO content of 15.0 mol% sintered at 900 °C exhibited a high ε_r value of 70. In the case of the specimens sintered at 850 °C, the $\varepsilon_{\rm r}$ value increased with increasing CuO content, but decreased when x exceeded 15.0 mol%. In addition, the variation in the ε_r value is the same as that of the density thus, density is an important factor which influences the $\varepsilon_{\rm r}$ of the specimen.

Fig. 8 shows the variation in the Q-value of the BaSm₂Ti₄O₁₂ + 10.0 mol% B₂O₃ + xCuO ceramics with $5.0 \le x \le 50.0$ mol% as a function of the sintering temperature and CuO content. The Q-value increased with increasing sintering temperature, but decreased with increasing CuO content, even though the absolute density increased. This decrease in the Q-value might be related to the increase in the amount of the liquid phase with increasing CuO content. The variation in the τ_f value of

1µm

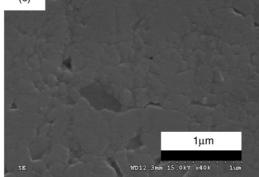


Fig. 6. SEM images of the thermally etched surfaces of the BaSm₂Ti₄O₁₂ + 10.0 mol% B₂O₃ + xCuO ceramics sintered 875 °C for 2 h: (a) x = 5.0 mol%, (b) x = 10.0 mol% and (c) c = 20.0 mol%.

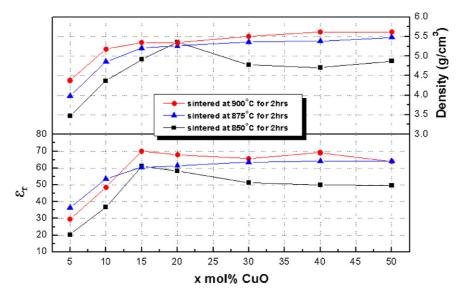


Fig. 7. Variations in the absolute density and ε_r value of the BaSm₂Ti₄O₁₂ + 10.0 mol% B₂O₃ + xCuO ceramics where $5.0 \le x \le 50.0$ mol% sintered at various temperatures.

the specimens sintered at 875 °C is also shown in Fig. 8. The $\tau_{\rm f}$ value of the BaSm₂Ti₄O₁₂ + 10.0 mol% B₂O₃ + 5.0 mol% CuO ceramics is about -11 ppm/°C and varied slightly, but non-significantly, with the CuO content. Good microwave dielectric properties of $\varepsilon_{\rm r}$ =61.47, $Q \times f$ =4256 GHz and $\tau_{\rm f}$ =-9.25 ppm/°C, were obtained for the BaSm₂Ti₄O₁₂ +10.0 mol% B₂O₃ +20.0 mol% CuO ceramics sintered at 875 °C for 2 h.

To clarify the effect of the $BaCu(B_2O_5)$ phase on the sintering temperature of the $BaSm_2Ti_4O_{12}$ ceramics, we made $BaCu(B_2O_5)$ and added it to the $BaSm_2Ti_4O_{12}$ ceramics. When $BaCu(B_2O_5)$ was added, the $BaSm_2Ti_4O_{12}$ ceramics were well sintered even at 875 °C. Fig. 9 shows the variations in absolute density, ε_r value and Q-value of the $BaCu(B_2O_5)$ added $BaSm_2Ti_4O_{12}$ ceramics sintered at vari-

ous temperatures for 2 h. The density increased with increasing BaCu(B₂O₅) content and became saturated when 16.0 mol% of BaCu(B₂O₅) was added. Similar variations were also observed for the ε_r value and Q-value. Good dielectric properties of ε_r = 60.0 and $Q \times f$ = 4500 GHz were obtained for the BaSm₂Ti₄O₁₂ ceramic with 16.0 mol% of BaCu(B₂O₅) sintered at 875 °C. From this result, it can be inferred that BaCu(B₂O₅) second phase was formed in the B₂O₃ and CuO added BaSm₂Ti₄O₁₂ ceramics and helped in the densification at low temperature. Moreover, it can be concluded that the BaCu(B₂O₅) phase is a good additive for decreasing the sintering temperature of the BaSm₂Ti₄O₁₂ ceramics without deteriorating the microwave dielectric properties. However, more investigation is required before it can be used in practical applications.

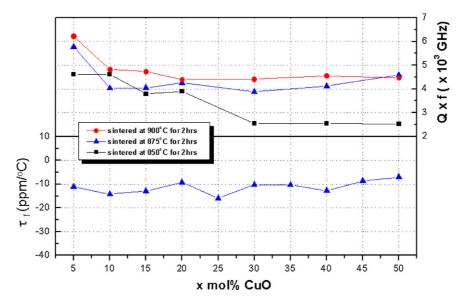


Fig. 8. Variations in the Q-value and τ_f value of the BaSm₂Ti₄O₁₂ + 10.0 mol% B₂O₃ + xCuO ceramics where $5.0 \le x \le 50.0$ mol% as a function of the sintering temperature and CuO content.

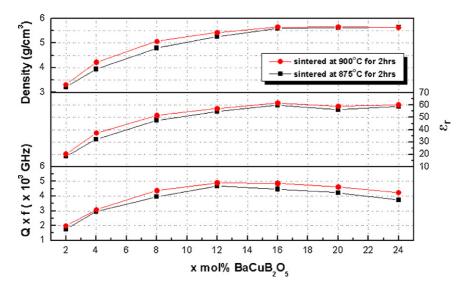


Fig. 9. Variations in the absolute density, ε_r value and Q-value of the BaCu(B₂O₅) added BaSm₂Ti₄O₁₂ ceramics sintered at various temperatures for 2 h.

4. Conclusions

The B₂O₃ added BaSm₂Ti₄O₁₂ ceramics were not able to be sintered below 1000 °C. However, when both B₂O₃ and CuO were added, the BaSm₂Ti₄O₁₂ ceramics were sintered even at 850 °C. It is suggested that the BaCu(B₂O₅) phase existed as the liquid phase during the sintering process, and assisted in the densification of the BaSm₂Ti₄O₁₂. However, it is possible that the liquid phase can have the composition other than BaCu(B₂O₅). The ε_r value and *Q*-value increased with the addition of a small amount of CuO. Good microwave dielectric properties of ε_r = 61.47, $Q \times f$ = 4256 GHz and τ_f = -9.25 ppm/°C were obtained for the BaSm₂Ti₄O₁₂ + 10.0 mol% B₂O₃ + 20.0 mol% CuO ceramics sintered at 875 °C for 2 h.

Acknowledgements

This work was supported by the Ministry of Commerce, Industry and Energy and one of the authors also acknowledges the financial support provided by the Ministry of Science and Technology through the NRL Project.

References

- 1. Okawa, T., Sumitomo Search, 1991, 47, 117.
- 2. Kawashima, S., Nishida, M., Ueda, I. and Ouchi, H., Dielectric Properties at Microwave Frequencies of the Ceramics in BaO–Sm $_2$ O $_3$ –TiO $_2$

- System, *Presented at the 87th Annual Meeting*, American Ceramic Society, Cincinnati, OH, May 6, 1985 (Electronics Division Paper No. 15-E-85).
- 3. Ohsato, H., J. Eur. Ceram. Soc., 2001, 21, 2703-2711.
- Ohsato, H., Mizuta, M., Ikoma, T., Onogi, Z., Nishigaki, S. and Okuta, T., J. Ceram. Soc. Jpn., 1998, 106(2), 178–184.
- Ohsato, H., Nishigaki, S. and Okuda, T., *Jpn. J. Appl. Phys*, 1992, 31, 3136
- Ota, Y., Kakimoto, K., Ohsato, H. and Okawa, T., J. Eur. Ceram. Soc., 2004, 24, 1755–1760.
- Hu, M. Z., Zhou, D. X., Gu, H., Wang, H., Zhang, T. and Zhou, B., Mater. Sci. Eng. B, 2005, 117, 199–204.
- Dernovsek, O., Naeini, A., Preu, G., Wersing, W., Eberstein, M. and Schiller, W. A., J. Eur. Ceram. Soc., 2001, 21, 1693.
- Cheng, C. C., Hsieh, T. E. and Lin, I. N., J. Eur. Ceram. Soc., 2003, 23, 2553
- Cho, I. S., Kim, D. W., Kim, J. R. and Hong, K. S., Ceram. Int., 2004, 30, 1181–1185.
- Kim, M. H., Nahm, S., Lee, W. S., Yoo, M. J., Kang, N. K., Kim, H. T. et al., Jpn. J. Appl. Phys., 2005, 44, 3091–3094.
- Kim, M. H., Jeong, Y. H., Nahm, S., Kim, H. T. and Lee, H. J., J. Eur. Ceram. Soc., 2006, 26, 2139–2142.
- Hakki, B. W. and Coleman, P. D., IEEE Trans. Microwave Theor. Tech., 1960, 8, 402.
- 14. Courtney, W. E., IEEE Trans. Microwave Theor. Tech., 1970, 18, 476.
- Levin, E. M. and McMurdie, H. F., J. Res. Natl. Bur. Stand., 1949, 42, 131.
- 16. Shuster, N. S., Zeinalova, Kh. L. K., Zargarova, M. I. and Zh. Neorg, *Khim.*, 1982, **27**(7), 1837–1841;
 - Shuster, N. S., Zeinalova, Kh. L. K., Zargarova, M. I. and Zh. Neorg, *Russ. J. Inorg. Chem.* (Engl. Transl.), 1982, **27**(7), 1037–1040.