

Journal of the European Ceramic Society 22 (2002) 1225–1233

www.elsevier.com/locate/jeurceramsoc

# Joining alumina using an alumina/metal composite

J.Q. Li, P. Xiao\*,1

Materials Group, Department of Mechanical Engineering, Brunel University, Uxbridge UB8 3PH, UK

Received 31 May 2001; accepted 23 July 2001

### **Abstract**

Alumina/alumina (Al<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>) joints and alumina/aluminium metal-matrix composite (Al<sub>2</sub>O<sub>3</sub>/Al-MMC) joints were fabricated using an Al<sub>2</sub>O<sub>3</sub>-Al composite as an interlayer. The Al<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> joining procedures involved the sintering of silica or silicate glass on the surface of the Al<sub>2</sub>O<sub>3</sub>, followed by the reactive penetration of liquid aluminium into the sintered glass to form an Al<sub>2</sub>O<sub>3</sub>-Al composite interlayer between the two Al<sub>2</sub>O<sub>3</sub> pieces. To join Al<sub>2</sub>O<sub>3</sub> to Al-MMC, after the fabrication of the Al<sub>2</sub>O<sub>3</sub>-Al composite layer on the surface of Al<sub>2</sub>O<sub>3</sub> using the combination of sintering and reactive penetration, Al<sub>2</sub>O<sub>3</sub>/composite/MMC joints were fabricated by using diffusion bonding between the Al<sub>2</sub>O<sub>3</sub>-Al composite layer and the MMC. The microstructures, phase composition and mechanical properties of the joints were examined using scanning electron microscopy (SEM), XRD analysis and shear testing, respectively. Experimental results showed that the high porosity in the sintered glass layer led to the formation of a porous Al<sub>2</sub>O<sub>3</sub>-Al composite layer between two Al<sub>2</sub>O<sub>3</sub> pieces. The addition of cordierite (2MgO·2Al<sub>2</sub>O<sub>3</sub>·5SiO<sub>2</sub>) to the pure silica lowered the melting point of the glass and led to the formation of a dense glass layer at the surface of the Al<sub>2</sub>O<sub>3</sub>. Consequently, a dense composite layer was produced. Stronger joints were fabricated with shear strengths of the Al<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> and Al-MMC/Al<sub>2</sub>O<sub>3</sub> joints of 105.2 and 47.6 MPa respectively. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Al<sub>2</sub>O<sub>3</sub>; Composite; Joining; MMC; Reactive penetration

### 1. Introduction

Ceramics have excellent strength, high wear and corrosion resistance at elevated temperatures, and a variety of electrical properties. The use of ceramic components for structural, electrical and electronic applications is rapidly increasing, but difficulties in machining have hindered the in cost-effective use. Hence, most applications require joining of ceramic to ceramic, or ceramic to metal for multiple functions and reduced cost and the joining technique becomes very important. Extensive research has been carried out to develop joining techniques for these materials.

Alumina ceramics not only have excellent strength, high resistance to wear and corrosion, but also exhibit high electrical insulation. Alumina is becoming important in engineering applications as both a structural and an electrically insulating material. Extensive studies

have been carried out on the joining Al<sub>2</sub>O<sub>3</sub> to Al<sub>2</sub>O<sub>3</sub>, Al<sub>2</sub>O<sub>3</sub> to metals or Al<sub>2</sub>O<sub>3</sub> to metal matrix composites. Most of these joints were fabricated by using an inserted metal interlayer, such as titanium, 1 aluminium, 2,3 copper,<sup>4,5</sup> Al-based alloy (Al-10 wt.% Mg, Al-10 wt.% Si and Al-10 wt.% Cu),6 Ag-Cu-Ti alloy,7 nickel,8 Snbased alloy/Ni-based alloy<sup>9</sup> and Ag-Cu-Zr alloy.<sup>10</sup> Due to the difference in the coefficient of thermal expansion (CTE) between Al<sub>2</sub>O<sub>3</sub> and the metal, residual stresses were induced upon cooling after joining at high temperature, 11 which would cause crack formation in the joints during the service of the ceramic components. To overcome this problem caused by the residual stress, multilayer or functionally graded materials have been used for joining ceramic to ceramic or ceramic to metal. 12,13 For example, an Al<sub>2</sub>O<sub>3</sub>-Ni joint with an Al<sub>2</sub>O<sub>3</sub>-60 vol.% Ni composite interlayer has been produced using a hot pressing process.<sup>14</sup> However, most of these techniques involved the application of high pressure at high temperature, which limits the application of this technique for joining a wide range of ceramic components. A reactive penetration process has been developed over many years to produce Al<sub>2</sub>O<sub>3</sub>-Al composites in a simple and economic way. 15-18 In this process, silica or silicate

<sup>\*</sup> Corresponding author at present address. Tel.: +44-161-200-5941; fax: +44-161-200-3586.

E-mail address: ping.xiao@man.ac.uk (P. Xiao).

<sup>&</sup>lt;sup>1</sup> Present address: Manchester Materials Science Centre, University of Manchester, Grosvenor Street, Manchester, M1 7HS, UK.

glass was either cold pressed or sintered to produce a preform first. Then, the molten Al penetrated and reacted with the glass preform to produce Al<sub>2</sub>O<sub>3</sub>/Al(Si) composites. The process is simple involving a relatively low temperature process (<1200 °C). The physical properties of the sample such as the Young's modulus, hardness are dominated by the network structured alumina, whereas the fracture toughness is improved due to the presence of the soft Al in the composites. However, fabrication of ceramic/ceramic or ceramic/metal joints using a ceramic/ metal composite interlayer produced by the reactive penetration process during the joining process has not been reported. In the present study, we developed this process to join Al<sub>2</sub>O<sub>3</sub> to Al<sub>2</sub>O<sub>3</sub> and to join Al<sub>2</sub>O<sub>3</sub> to an Al metal matrix composite. The joints show high shear strength with little change after thermal cycling up to 500 °C.

## 2. Experimental detail

# 2.1. Materials

Fused SiO<sub>2</sub> powder and cordierte powder were obtained from Dytech Co-operation Ltd., UK, having particle sizes of 75 μm and with a purity of 99.9%. Al powder was obtained from Aldrich Chemical Co., USA, having an average particle size of 20 μm and with a purity of +99%. Alumina pieces (99% purity) were obtained from Pi Kem Ltd., UK. The Al–30 vol.% Al<sub>2</sub>O<sub>3</sub> composite (Al–MMC) was fabricated using the pressure infiltration of molten aluminium into a porous alumina preform at 600 °C.<sup>19</sup> Both the alumina and Al–MMC were cut into pieces of 12×12×5 mm for joining. The surfaces of the specimens were polished using 1200-grit SiC paper and then ultrasonically cleaned in acetone before joining.

### 2.2. Fabrication procedure

To produce a silica preform on the surface of Al<sub>2</sub>O<sub>3</sub>, a layer of silica glass was applied to the surface of the Al<sub>2</sub>O<sub>3</sub> using screen printing of silica paste, followed by sintering. The silica paste was made by mixing silica powder and a Blythe binder (2 g powder in 1 ml binder). The binder contained 50% terpineol and 50% ethyl cellulose (John Mathew Ltd, UK). The paste was screen printed onto a surface of an Al<sub>2</sub>O<sub>3</sub> piece to produce a layer with a thickness of about 200–300 µm. After drying at 150 °C in air for 3 h, the printed layer was heated at a rate of 20 °C/ min to 1500 °C, remaining at this temperature for 20 min, followed by cooling to room temperature at the same rate. The surface of the sintered silica layer was polished using 1200-grit SiC paper and then ultrasonically cleaned in acetone. It should be noted that the high heating and cooling rates were used to avoid the formation of low temperature phases of  $SiO_2$ , such as  $\alpha$ - and  $\beta$ -quartz and thus to obtain a higher density of the SiO<sub>2</sub> layer.

Following this, an Al paste (3 g Al powder in 1ml binder) was screen printed onto the surface of the sintered silica layer on the surface of the  $Al_2O_3$  piece, which was followed by placing another  $Al_2O_3$  piece on the top of the wet Al paste. After drying at  $120\,^{\circ}$ C in air for 5 h, the sandwiched structure (Fig. 1a) was placed in a vacuum furnace ( $p = 5 \times 10^{-5}$  Torr) and heated to  $800-1000\,^{\circ}$ C with a heating rate of  $10\,^{\circ}$ C/min, kept at the maximum temperature for 30 min, and then cooled to room temperature at the rate of  $10\,^{\circ}$ C/min. When the furnace temperature reached  $700\,^{\circ}$ C, a pressure of  $0.68\,^{\circ}$ MPa was applied to the sample in order to expel the possible molten Al present at the joint.

The method for producing a dense glass preform layer between two  $Al_2O_3$  pieces was by sintering the glass with a composition of  $SiO_2$ –4.6 mol.% cordierite. Similarly, a mixture of  $SiO_2$ –4.6 mol.% cordierite and the binder with a ratio of 2 g powder to 1 ml binder was used to produce a glass paste. The paste was applied onto the surface of an  $Al_2O_3$  piece and then sandwiched with another  $Al_2O_3$  piece. After drying the paste in air at  $120~^{\circ}C$  for 5 h, the  $Al_2O_3/glass/Al_2O_3$  joint were produced by sintering the glass at  $1500~^{\circ}C$  for 20 min. The final joint was obtained by reactive penetration of molten Al into the dense glass layer between the two  $Al_2O_3$  pieces at  $1000~^{\circ}C$  for 5 h.

To fabricate the Al–MMC/Al $_2$ O $_3$ –Al/Al $_2$ O $_3$  joint, firstly a dense glass layer was produced on the surface of the Al $_2$ O $_3$  piece using screen printing and sintering as described above. Then the Al was reactively penetrated into the dense glass layer to form a dense Al $_2$ O $_3$ –Al composite on the surface of the Al $_2$ O $_3$  substrate. Finally the Al $_2$ O $_3$ –Al composite was joined to the Al-MMC by diffusion bonding, which was carried out at 580 °C in a vacuum for 10 min with an applied pressure of 0.68 MPa.

The cross sections of the joints were characterised using scanning electron microscopy (SEM Jeol JXA-840) coupled to an energy dispersive X-ray spectrometer (EDS). The phases in the interlayer was identified using X-ray diffraction analysis (Philips PW1140). The shear fracture strength of the joints was measured using a specially designed fixture at room temperature [Fig. 1(b)]. Samples of  $5.0 \times 5.0 \times 10.0$  mm dimension were cut for the shear testing. Three repeat shear tests were carried for the joints produced under the same joining conditions.

### 3. Results

3.1.  $Al_2O_3$ — $Al_2O_3$  joining using reactive penetration of Al into the porous silica layer

Initially the joining experiments were carried out by sintering a mixture of Al and SiO<sub>2</sub> powder sandwiched

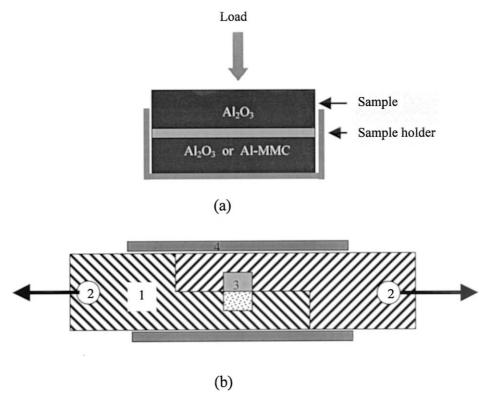
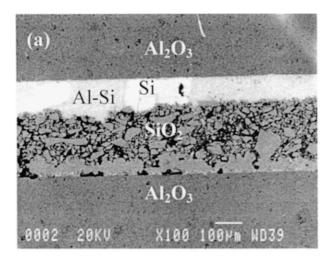



Fig. 1. (a) The sample holder and (b) shear test apparatus for the joints. The numbers shown in (b) represent: 1, for holder; 2, for bolt; 3, for sample; 4, for casing pipe.


between two Al<sub>2</sub>O<sub>3</sub> pieces between 700 and 1000 °C, where the reaction occurred between the SiO<sub>2</sub> and Al led to the formation of very porous interlayer at these temperatures and thus no viable joint was obtained. Thereafter, sintering the SiO<sub>2</sub> layer on the surface of the Al<sub>2</sub>O<sub>3</sub> was carried out before joining. However, it proved difficult to achieve a high density SiO<sub>2</sub> layer by sintering at temperatures below the melting point (1726 °C) of SiO<sub>2</sub>, even though high heating and cooling rates were used to avoid phases transformation of SiO<sub>2</sub>.<sup>20</sup> On the other hand, in order to avoid the degradation of Al<sub>2</sub>O<sub>3</sub> due to its grain growth at high temperature, the SiO<sub>2</sub> layer at the surface of Al<sub>2</sub>O<sub>3</sub> should be sintered at temperatures below 1600 °C. After sintering at 1500 °C, the porosity in the SiO<sub>2</sub> layer on Al<sub>2</sub>O<sub>3</sub> was found to be about 20-30 vol.% measured using image analysis (Nikon light microscope with a Quantimet 520 analyser). X-ray diffraction analysis of the SiO<sub>2</sub> showed that the main phase in the glass layer was its high temperature cristobalite phase with a small amount of its low temperature phase,  $\alpha$ -quartz.

With a layer of Al placed on top of the  $SiO_2$  layer, the Al could reactively penetrate into the  $SiO_2$  at  $1000\,^{\circ}\text{C}$  in vacuum. Thus, an  $Al_2O_3$ –Al composite layer was obtained between the two  $Al_2O_3$  pieces. Experiments showed that the reactive penetration of molten Al into the  $SiO_2$  layer took place quickly at temperatures above  $1000\,^{\circ}\text{C}$ . Fig. 2 shows cross-sections of the joints pro-

duced at (a) 850 °C and (b) 1000 °C. A layer of unreacted Al, which contains some Si precipitates, was found in both samples. At 850 °C, the reaction only occurred at the interface between the molten Al and SiO<sub>2</sub> without the penetration of Al into the SiO<sub>2</sub> [Fig. 2(a)] However, at 1000 °C, an Al<sub>2</sub>O<sub>3</sub>/Al(Si) composite layer was produced between the two Al<sub>2</sub>O<sub>3</sub> pieces [Fig. 2(b)]. The X-ray diffraction analysis of the fracture surface for the joint produced at 1000 °C, shown in Fig. 3(a), suggested the presence of Al<sub>2</sub>O<sub>3</sub>, Al and Si, but no SiO<sub>2</sub> in the composite layer, indicating that the reaction between molten Al and SiO<sub>2</sub> was complete. The formation of Al<sub>2</sub>O<sub>3</sub>–Al composite can be described by the following reaction:

$$SiO_2 + \frac{4}{3}Al(1) = \frac{2}{3}Al_2O_3(s) + Si(s)$$
 (1)

In this reaction, the molten Al reduces SiO<sub>2</sub> to produce Al<sub>2</sub>O<sub>3</sub> and Si. The Si dissolved into liquid Al initially, and then precipated during cooling. Most of the Si precipitated in the Al outside the composite while a small amount of Si remained in the Al channels in the composite. This is in good agreement with the results reported previously. <sup>16,21,22</sup> The Si content in the unreacted Al layer outside the composite depends on the thickness of the Al and SiO<sub>2</sub> layers before the reaction. Due to the solubility of Si in the liquid Al–Si alloy



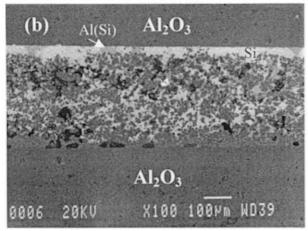



Fig. 2. Scanning electron micrographs of cross-section of the  $Al_2O_3/Al-Al_2O_3/Al_2O_3$  joints fabricated from the penetration of Al into the porous  $SiO_2$  layer at (a) 850 °C and (b) 1000 °C in a vacuum for 30 min.

at 1000 °C which is 46.0 wt.% Si and the very low solubility of Si in solid Al,<sup>23</sup> the Si dissolved in Al as Al alloy Al(Si) at high temperature, and then precipitated during cooling. When pressure was applied to the joint at 700 °C, the precipated Si prevented the liquid Al alloy from being expelled between the composite and Al<sub>2</sub>O<sub>3</sub> (Fig. 2). As shown in Fig. 2(b), large voids in the composite layer could not be infiltrated by the molten Al during the reactive penetration process. Therefore, the formation of the composite layer was controlled mainly by the Al/SiO<sub>2</sub> reaction instead of by Al infiltration. In this case, the porous SiO<sub>2</sub> interlayer led to the formation of a porous Al<sub>2</sub>O<sub>2</sub>/Al composite interlayer. Therefore, the preparation of a dense SiO<sub>2</sub> layer on the surface of Al<sub>2</sub>O<sub>3</sub> should favour the production of a dense Al<sub>2</sub>O<sub>3</sub>-Al composite interlayer.

Fig. 4 shows the interface between the Al<sub>2</sub>O<sub>3</sub>–Al composite layer and Al<sub>2</sub>O<sub>3</sub> substrate, and between the Al<sub>2</sub>O<sub>3</sub>–Al composite layer and metal layer. The newly formed Al<sub>2</sub>O<sub>3</sub> phase in the composite layer was produced based on the Al<sub>2</sub>O<sub>3</sub> substrate [Fig. 4(a)]. At the interface between the metal layer and the composite layer, there no intermediate layer appeared [Fig. 4(b)]. The microstructure of the joint shows a strong bonding at these interfaces. Shear testing showed that fracture always occurred within the composite layer, (see Section 3.4). The high porosity in the Al<sub>2</sub>O<sub>3</sub>–Al composite interlayer led to a low shear strength of the joints.

# 3.2. $Al_2O_3$ — $Al_2O_3$ joining using reactive penetration of Al into a dense silicate layer

In order to increase the density of the glass layer joined to the two Al<sub>2</sub>O<sub>3</sub> pieces, a mixture of SiO<sub>2</sub>-4.6

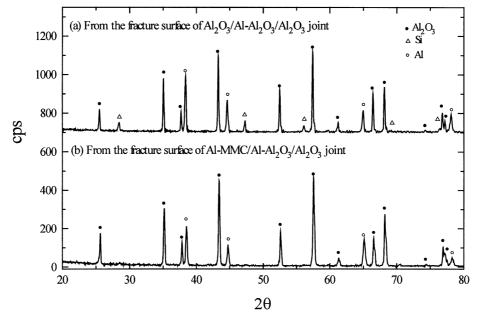




Fig. 3. X-ray diffraction analysis of the fracture surface of (a) the Al<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>-Al/Al<sub>2</sub>O<sub>3</sub> and (b) Al-MMC/Al<sub>2</sub>O<sub>3</sub>-Al/Al<sub>2</sub>O<sub>3</sub> joints after shear tests.



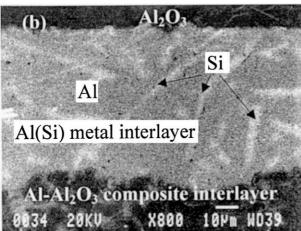
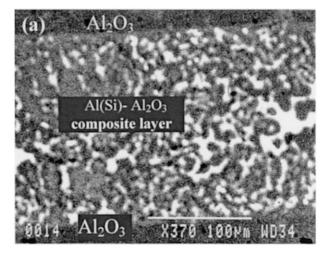




Fig. 4. Scanning electron micrographs of the interfaces (a) between the  $Al_2O_3$ –Al composite and  $Al_2O_3$  substrate and (b) between the  $Al_2O_3$ –Al composite and metal layer.

mol% codierite (2MgO·2Al<sub>2</sub>O<sub>3</sub>·5SiO<sub>2</sub>) powder was used as a joining agent, where the codierite melted incongruently with the lowest liquidus temperature of 1345 °C. The amount of liquid increased quite rapidly with increasing temperature above 1345 °C.<sup>24</sup> In this work, the silicate powder paste with a composition of SiO<sub>2</sub>-4.6 mol% codierite was sandwiched between the two Al<sub>2</sub>O<sub>3</sub> pieces and then sintered at 1500 °C for 20 min. After the sintering, a dense silicate layer joined the two Al<sub>2</sub>O<sub>3</sub> pieces. These joints showed low shear strength (3.5–6.2 MPa) due to the low strength of the glass layer. Joints of this type were then immersed in a liquid Al bath at 1000 °C in a vacuum for 5 h. An Al<sub>2</sub>O<sub>3</sub>— Al composite layer with a high density between the two Al<sub>2</sub>O<sub>3</sub> pieces was obtained after the reactive penetration of Al into the glass layer. Fig. 5 shows cross-sections of the Al<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> joints with the dense Al<sub>2</sub>O<sub>3</sub>-Al composite interlayer. However, voids are present in some regions of the joints (Fig. 5b). The presence of large Al channels in the composite layer may be due to the formation of cracks or inhomogenety in the glass layer during the fabrication of Al<sub>2</sub>O<sub>3</sub>/glass/Al<sub>2</sub>O<sub>3</sub> joints.



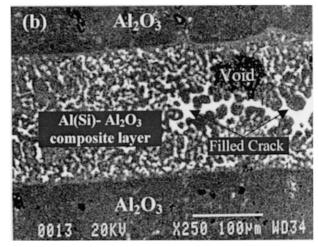



Fig. 5. Scanning electron micrographs of cross-sections of the  $Al_2O_3/Al_2O_3$ – $Al/Al_2O_3$  joints fabricated using a dense interlayer (a) without and (b) with a void in the joint.

There is no MgO found in the ceramic network, neither was Mg found in the metal channel according to EDS analysis. The ceramic network is pure alumina while the metal network contains mainly Al and a small amount of Si. A small amount of MgO (about 2 at.% Mg) was found to exist in the void region shown in Fig. 5(b). This may be due to poor penetration of Al into the void. The MgO should react with the molten Al to produce Mg which dissolved in the Al, but the level of Mg is too low to be detected. The formation of the voids may reduce the joint strength, but the low concentration of voids reduced the effect of the voids on the joint strength. During shear testing, fracture always occurred in the Al<sub>2</sub>O<sub>3</sub> substrate, instead of in the composite interlayer. This indicates that a high strength of the composite layer has been achieved by using this dense glass interlayer.

# 3.3. MMC-Al<sub>2</sub>O<sub>3</sub> joining using diffusion bonding

For MMC-Al<sub>2</sub>O<sub>3</sub> joining, a dense glass layer was first produced on the surface of Al<sub>2</sub>O<sub>3</sub> using screen printing

and sintering. Following this the reactive penetration of liquid Al into the glass was carried out to produce a dense Al<sub>2</sub>O<sub>3</sub>–Al composite layer on the surface of the Al<sub>2</sub>O<sub>3</sub>. After polishing the surface of the Al<sub>2</sub>O<sub>3</sub>–Al composite, the composite was joined to Al–MMC by diffusion bonding, which was carried out at 580 °C in a vacuum for 10 min with an applied pressure of 0.68 MPa.

Fig. 6 shows a cross-section of the Al<sub>2</sub>O<sub>3</sub>/composite/ MMC joint. The composite interlayer shows the interpenetrating microstructure, which is similar to that in the Al<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> joints. The microstructure shows that a good bond was achieved at the interfaces between the composite layer and the Al<sub>2</sub>O<sub>3</sub> layer, and between the composite layer and the MMC layer. The bonding between Al<sub>2</sub>O<sub>3</sub> layer and composite interlayer was achieved again by growing the newly formed Al<sub>2</sub>O<sub>3</sub> phase based on the Al<sub>2</sub>O<sub>3</sub> substrate. The Si precipitates in the Al network of the Al<sub>2</sub>O<sub>3</sub>-Al composite layer disappeared after joining. It is believed that the Si diffused into the MMC during the joining process. The Al<sub>2</sub>O<sub>3</sub>-Al composite layer and the MMC layer might be bonded due to the formation of the Al-Si eutectic liquid phase at the joining temperature of 580 °C, where a transient liquid-phase (TLP) formed at the temperature above the eutectic point of Al-Si alloy (577 °C).<sup>23</sup> XRD analysis of the fracture surface of this joint (Fig. 3b) confirms the presence of Al and Al<sub>2</sub>O<sub>3</sub> phases in the composite layer.

### 3.4. Shear testing of the joints

The shear tests of the joints were carried out before and after thermal cycling. Three shear strength values for the Al<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> joint with a porous composite interlayer were 68.0, 55.2 and 46.6 MPa. The failure always occurred inside the Al<sub>2</sub>O<sub>3</sub>–Al composite layer [Fig. 7(a)]. The low strength of the composite layer led

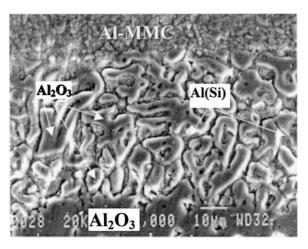
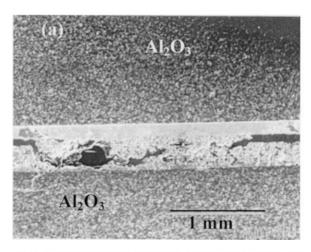




Fig. 6. Scanning electron micrograph of the cross-section of the Al–MMC/Al $_2$ O $_3$ -Al/Al $_2$ O $_3$  joint fabricated using a dense glass interlayer.

to a low strength of the joint. The variation of the joint strength might be due to variation of homogeneity in the composite layer and some error in aligning the joint plane parallel to the shear direction.<sup>25</sup> With the fabrication of the dense composite layers, the three shear strength values of the Al<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> joints became 127.2, 105.6 and 82.9 MPa. The shear strength of these joints are close to that for the alumina pieces, which was determined to be 135.5±20 MPa. The cracks always initiated at the edge of the Al<sub>2</sub>O<sub>3</sub>/composite interface, but propagated into the Al<sub>2</sub>O<sub>3</sub> ceramic, leading to failure of the Al<sub>2</sub>O<sub>3</sub> [Fig. 7(b)]. This indicates that both the bonding strength at the Al<sub>2</sub>O<sub>3</sub>/composite interface and the strength of the composite interlayer is higher than that of the Al<sub>2</sub>O<sub>3</sub>. Fig. 8 shows SEM micrographs of the fracture surfaces of the Al<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> joints with the porous and the dense composite interlayer. The fracture surface of the porous joint is relatively flat showing the brittleness of the joint [Fig. 8(a)]. Large voids are present in this joint. The alumina network is coarser than that in the dense joints, an example of which is shown in Fig. 8(b). The fracture in the dense Al<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> joints



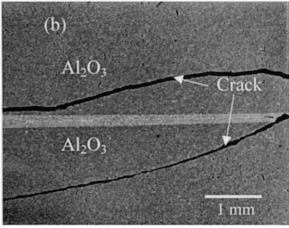



Fig. 7. Scanning electron micrographs of cross-sections of  $Al_2O_3$ / $Al_2O_3$ - $Al/Al_2O_3$  joints with (a) a porous and (b) a dense composite interlayer after shear testing.

started from the interface and then propagated into the  $Al_2O_3$  (Fig. 8b). It is well established that the maximum stress is present at the edge of the metal/ceramic interface after joining. However, the newly formed composite achieved a strong bonding between the  $Al_2O_3$  substrate and composite interlayer. The soft Al phase in the composite enhanced the toughness of the composite interlayer. Therefore the crack initiated at the edge of the interface and then propagated into the  $Al_2O_3$  substrate. Here, the variation of shear strength might be due to the variation of the strength in the  $Al_2O_3$  and a possible error in aligning the joint plane parallel to the shear direction.

The shear strengths of three MMC/Al<sub>2</sub>O<sub>3</sub>–Al/Al<sub>2</sub>O<sub>3</sub> joints are 56.2, 46.9 and 39.7 MPa. There is no evidence to show segregation of Al<sub>2</sub>O<sub>3</sub> particles in the MMC during joining (Fig. 9). Fracture always occurred at the interface between the MMC and the composite interlayer. The low strength of the joints may be due to the weak bond at the MMC/composite interface. The interface was formed due to the Al–Si eutectic reaction between the Al in the MMC



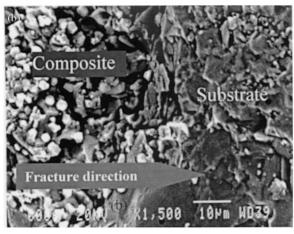



Fig. 8. Scanning electron micrographs of fracture surfaces of  $Al_2O_3$ / $Al_2O_3$ – $Al/Al_2O_3$  joints with (a) a porous and (b) a dense composite interlayer after shear testing.

and the Si from the composite interlayer. The flat surface after the fracture at the interface suggests that the interfacial bonding is weak (Fig. 103).

The Al<sub>2</sub>O<sub>3</sub>–Al<sub>2</sub>O<sub>3</sub> joints with a dense composite interlayer and the MMC–Al<sub>2</sub>O<sub>3</sub> joints survived the thermal cycling up to 500 °C with heating and cooling rates of 30 °C/min. The microstructure and shear strength were not significantly changed due to this thermal treatment. After the thermal cycling, the shear strength of the three Al<sub>2</sub>O<sub>3</sub>–Al<sub>2</sub>O<sub>3</sub> joints with dense composite interlayers were 118.0, 95.6 and 83.8 MPa. The shear strengths of the MMC–Al<sub>2</sub>O<sub>3</sub> joints were 55.2, 43.7 and 29.9 MPa. This indicates that the joints have good thermal shock resistance by introducing the composite interlayer. Further study needs to be carried out to examine the effect of long term thermal cycling on joint strength.

The soft Al network in the composite can blunt the propagation of the crack in the composite interlayer. The

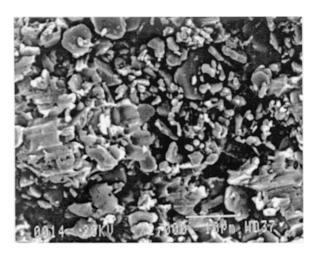



Fig. 9. Scanning electron micrograph of fracture surfaces of a Al–MMC/Al $_2$ O $_3$ –Al/Al $_2$ O $_3$  joint with a dense composite interlayer after shear testing.

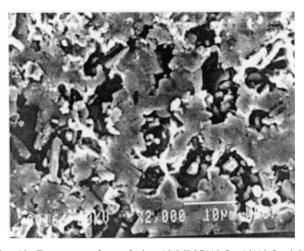



Fig. 10. Fracture surface of the  $Al-MMC/Al_2O_3-Al/Al_2O_3$  joint showing the flat surface of the composite.

composite interlayer can also reduce the residual stresses in the joint by reducing the coefficient of thermal expansion of the interlayer compared with that of a metal interlayer. It is suggested that the stronger joint would be would be achieved with a stronger alumina substrate.

### 4. Discussion

Extensive research has been carried out to study the formation of ceramic-metal composites by reactive metal penetration. 15-18,21,22 The preform ceramics studied include pure silica, pure mullite and mullite-glass composites. The reaction products can be Al<sub>2</sub>O<sub>3</sub>/Al, Al<sub>2</sub>O<sub>3</sub>-Al(Si) and Al<sub>2</sub>O<sub>3</sub>-Al(Si)-Si composites, depending on the reaction conditions and starting materials. In the present study, the reactive penetration of molten Al into a SiO<sub>2</sub> layer took place at 1000 °C in vacuum and produced an Al<sub>2</sub>O<sub>3</sub>-Al(Si)-Si composite layer between two Al<sub>2</sub>O<sub>3</sub> pieces. From the reaction described in Eq. (1), the volume fraction of Al<sub>2</sub>O<sub>3</sub> in the Al<sub>2</sub>O<sub>3</sub>-Al composite layer can be calculated, assuming that the preform layer has full density. The weight of  $Al_2O_3$  ( $W_2$ ) formed from the reaction between SiO<sub>2</sub> ( $W_1$ ) and Al should be  $W_2 = 2W_1M_2/3M_1$ , where  $M_1$  (60.09) and  $M_2$  (101.98) are the molecular masses of SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> respectively. The volumes for the  $SiO_{2}(W_{1})$  and  $Al_{2}O_{3}(W_{2})$  are  $V_{1} = W_{1}/\rho_{1}$  and  $V_{2} = W_{2}/\rho_{2}$ respectively, where  $\rho_1$  (2.15) and  $\rho_2$  (3.97) are the densities for SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> respectively. Assuming the volume of the composite product is same as that of the preform based on the results reported in,15 the volume fraction of  $Al_2O_3$  in the composite should be:

$$V(\text{Al}_2\text{O}_3) = \frac{V_2}{V_1} = \frac{W_2\rho_1}{W_1\rho_2} = \frac{2M_2\rho_1}{3M_1\rho_2} = \frac{2\times101.98\times2.15}{3\times60.09\times3.97}$$
$$= 0.613$$

Although the  $SiO_2$ –4.6 mol.% cordierite mixture contains MgO, the molar fraction of  $SiO_2$  is 98.0 mol.%. Therefore the volume fraction of  $Al_2O_3$  in the composite interlayer produced from this perform should be close to 61.3%.

The ceramic network in the composite controls many of its physical properties such as hardness, modulus, and expansion coefficient, while the interpenetrating ductile Al phase contributes to an improvement in composite fracture toughness. The composite fracture toughness increases with increasing Al content.<sup>27</sup> The use of a composite layer in the Al<sub>2</sub>O<sub>3</sub>–Al<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub>–MMC joints should reduce the residual stresses in the joints, compared with joints which use a metal interlayer. The composite containing Al should have a coefficient of thermal expansion (CTE) between the CTE of Al<sub>2</sub>O<sub>3</sub> and CTE of many metals.<sup>28</sup> Such an interlayer is especially beneficial for joining Al<sub>2</sub>O<sub>3</sub> to MMC by in

producing a functionally graded structure between the Al<sub>2</sub>O<sub>3</sub> and Al–MMC. In addition, this reactive penetration technique may be used to produce Ni<sub>3</sub>Al–Al<sub>2</sub>O<sub>3</sub> and Ti<sub>3</sub>Al–Al<sub>2</sub>O<sub>3</sub> composite layers at the ceramic-metal joints for high temperature applications.

The best shear strength of the Al<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> joint achieved was 127.2 MPa, which is comparable to the maximum shear strength for the joint of Al<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> (170 MPa) by using an inserted Ag–Cu–Ti alloy foil.<sup>7</sup> It is suggested that the shear strength of the joint produced in this study can be enhanced by using stronger alumina pieces and by further optimising the fabrication conditions. The shear strengths of the Al<sub>2</sub>O<sub>3</sub>/MMC and MMC/MMC joints with inserted Cu interlayer reported by Zhai and co-worker<sup>9,29</sup> are from 10 to 70 MPa, depended on the thickness of the Cu foils used (5-30 μm). These joints were formed using to the eutectic reaction between Cu and Al. Thicker Cu foil lead to segregation of ceramic particles and resulted in a lowering of the strength. In the present study, no segregation has been found in the Al-MMC/Al<sub>2</sub>O<sub>3</sub> joints. The lower strength (47.6 MPa) of the Al–MMC/ Al<sub>2</sub>O<sub>3</sub> joint in this work may be due to the weak bonding between the composite layer and the MMC, which is caused by the uneven distribution of the Si phase in the metal channels of the Al<sub>2</sub>O<sub>3</sub>-Al composite interlayer. This might be improved by inserting a Cu or Al-Si foil between the Al-MMC and Al<sub>2</sub>O<sub>3</sub>-Al composite.

### 5. Conclusions

A reactive penetration technique has been used to produce an  $Al_2O_3$ –Al composite interlayer between  $Al_2O_3$  and  $Al_2O_3$ , and between  $Al_2O_3$  and  $Al_2O_3$  metal matrix composite, where  $Al_2O_3/Al_2O_3$  joints and  $Al_2O_3/Al_2O_3$  joints were produced. The production of strong joints required the fabrication of a dense glass layer on the surface of  $Al_2O_3$ , which was produced by sintering a  $SiO_2$ –4.6 mol.% cordierite glass layer at  $1500\,^{\circ}$ C. The reactive penetration of Al into the dense glass layer took place in a vacuum at  $1000\,^{\circ}$ C to produce an  $Al_2O_3$ –Al composite. The shear strength of the  $Al_2O_3/Al_2O_3$  joints, produced using this method, were  $105.2\pm22$  and  $47.6\pm8.6$  MPa respectively.

### Acknowledgements

This work was supported by Engineering and Physical Science Research Council (EPSRC, GR/M40271) of United Kingdom.

### References

- Kato, H., Imai, M. and Yoshikawa, K., Influence of welding conditions and residual-stresses on strength of Al<sub>2</sub>O<sub>3</sub>/Ti diffusion welds. *Mater. Sci. Technol.*, 1990, 6, 641.
- Watanabe, A., Kato, H. and Yoshikawa, K., Properties of alumina/Al/alumina joints produced in air atmosphere. *Mater. Sci. Technol.*, 1993, 9, 155.
- Kato, H. and Chen, Y., Influence of pressure on bonding of alumina with molten aluminium as insert. *Mater. Sci. Technol.*, 1995, 11, 1287.
- Urena, A., Gomez de Salazar, J. M. and Quinones, J., Diffusion bonding of alumina to steel using soft copper interlayer. J. Mater. Sci., 1992, 27, 599.
- Zhai, Y., North, T. H. and Serrato Rodrigues, J., Transient liquid-phase bonding of alumina and metal matrix composite base materials. J. Mater. Sci., 1997, 32(6), 1393.
- Kobashi, M., Ninomiya, T., Kanetake, N. and Choh, T., Effect of alloying elements in the brazing sheet on the bonding strength between Al<sub>2</sub>O<sub>3</sub> and aluminum. Scripta Mater., 1996, 34, 415.
- Hao, H., Jin, Z. and Wang, X., The influence of brazing condition on joint strength in Al<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> bonding. *J. Mater. Sci.*, 1994, 29, 5041.
- Esposito, L., Bellosi, A., Guicciardi, S. and De Portu, G., Solid state bonding of Al<sub>2</sub>O<sub>3</sub> with Cu, Ni and Fe: characteristics and properties. *J. Mater. Sci.*, 1998, 33, 1827.
- Zhai, Y. and North, T. H., Transient liquid-phase insert metal bonding of Al<sub>2</sub>O<sub>3</sub> and AISI 304 stainless steel. *J. Mater. Sci.*, 1997, 32, 1399.
- Yoo, Y. C., Kim, J. H. and Park, K., Microstructure and bond strength of Ni-Cr steel/Al<sub>2</sub>O<sub>3</sub> joints brazed with Ag-Cu-Zr alloys containing Sn or Al. *Mater. Sci. Technol.*, 1999, 15, 1331
- Nicholas, M. G., Mortimer, D. A., Jones, L. M. and Crispin, R. M., Some observation on the wetting and bonding of nitride ceramics. *J. Mater. Sci.*, 1990, 25, 2679.
- Holt, J. B., Koizumi, M., Hirai, T. and Munir, Z. A., ed., Ceramic Transations, Vol. 34, Functionally Gradient Materials. American Ceramic Society, Westerville, OH, 1993.
- Ilschner, B. and Cherradi, N., ed., Proceedings of the 3rd International Symposium on Structure and Functionally Gradient Materials. Presses polytechniques et Universitaires Romandes, Lausanne, Swizerland, 1995.
- Rabin, B. H., Williamson, R. L. and Bruck, H. A., Residual strains in an Al<sub>2</sub>O<sub>3</sub>-Ni joint bonded with a composite interlayer: Experimental measurements and FEM analyses. *J. Am. Ceram.* Soc., 1998, 81, 1541.

- Liu, W. and Koster, U., Fabrication of ceramic/metal composites by reduction of glass SiO<sub>2</sub> preforms in molten metals and alloys. *J. Mater. Sci. Letters*, 1996, 15, 2188.
- Saiz, E. and Tomsia, A. P., Kinetics of metal-ceramic composite formation by reactive penetration of silicates with molten aluminum. *J. Am. Ceram. Soc.*, 1998, 81(9), 2381.
- Yoshikawa, N., Funahashi, S., Kikuchi, A. and Taniguchi, S., Variations in processing, microstructure and properties of Al/ Al<sub>2</sub>O<sub>3</sub> composites fabricated by displacement reaction. *Int. J. Mater. Prod. Technol.*, 2001, 16, 32.
- Yoshikawa, N., Funahashi, S., Taniguchi, S. and Kikuchi, A., Fabrication and mechanical properties of Al/Al<sub>2</sub>O<sub>3</sub> composite bodies by reactive infiltration of molten Al into SiO<sub>2</sub> preform. *J. Mater. Res.*, 2000, 15(11), 2314.
- Zhou, Z., Peng, H. X., Fan, Z. and Li, D. X., MMCs with controlled non-uniform distribution of submicrometre Al<sub>2</sub>O<sub>3</sub> particles in 6061 aluminium alloy matrix. *Mater. Sci. Technol.*, 2000, 16(7–8), 908.
- Hlavac, J., The Technology of Glass and Ceramics. Elsevier, New York, 1983.
- Loehman, R. E., Ewsuk, K. and Tomsia, A. P., Synthesis of Al<sub>2</sub>O<sub>3</sub>-Al composites by reactive metal penetration. *J. Am. Ceram. Soc.*, 1996, 79(1), 27.
- Gao, Y., Jia, J., Loehman, R. E., Ewsuk, K. G. and Fahrenholtz, W. G., Microstructure and composition of Al–Al<sub>2</sub>O<sub>3</sub> composites made by reactive metal penetration. *J. Mater. Sci.*, 1996, 31(15), 4025
- Smithells, C. J., Metals Reference Book, 5th edn. Butterworth, London, 1976.
- 24. Kingery, W. D., Bowen, H. K. and Uhlmann, D. R., *Introduction to Ceramics*, 2nd edn. John Wiley, New York, 1976.
- Durov, A. V., Kostjuk, B. D., Shevchenko, A. V. and Naidich, Y. V., Joining of zirconia to metal with Cu–Ga–Ti and Cu–Sn–Pb–Ti fillers. *Mater. Sci. Eng. A*, 2000, 290(1–2), 186.
- Elssner, G., Bond strength of ceramic-metal joints. In *Joining of Ceramic*, ed. M. G. Nicholas. Chapman and Hall, London, 1990, pp. 137.
- Loehman, R. E., Ewsuk, K. G., Fahrenholtz, W. F. and Lakshman, B. B., Ceramic-metal composite formation by reactive metal penetration. *Key Eng. Mater.*, 1997, 127(Part 1 and 2), 431.
- Ewsuk, K. G., Glass, S. J., Loehman, R. E., Tomsia, A. P. and Fahrenholtz, W. G., Microstructure and properties of Al<sub>2</sub>O<sub>3</sub>–Al(Si) and Al<sub>2</sub>O<sub>3</sub>–Al(Si)–Si composites formed by in situ reaction of Al with aluminosilicate ceramics. *Metall. Mater. Trans. A*, 1996, 27(8), 2122.
- Zhai, Y. and North, T. H., Counteracting particulate segregation during transient liquid-phase bonding of MMC–MMC and Al<sub>2</sub>O<sub>3</sub>–MMC joints. J. Mater. Sci., 1997, 32, 5571.