

Journal of the European Ceramic Society 21 (2001) 1299-1302

www.elsevier.com/locate/jeurceramsoc

Additive effects on electrical properties of (Bi_{1/2}Na_{1/2})TiO₃ ferroelectric ceramics

Hajime Nagata, Tadashi Takenaka*

Faculty of Science and Technology, Science University of Tokyo, Yamazaki 2641, Noda, Chiba 278-8510, Japan

Received 4 September 2000; received in revised form 2 November 2000; accepted 10 November 2000

Abstract

Microstructure, dielectric, ferroelectric and piezoelectric properties of bismuth sodium titanate $(Bi_{1/2}Na_{1/2})TiO_3$ (BNT) were studied for a candidate as lead-free piezoelectric ceramics. In the case of Mn addition, the Curie temperature, T_c , decreases rapidly with increasing amount of doped MnCO₃. The resistivity, ρ , is enhanced to 3×10^{14} (Ω cm) (at 40° C) for BNT + MnCO₃ 0.2 (wt.%) and electromechanical coupling factor, k_{33} , was obtained the relatively high value under the condition of the low poling field, E_p for the Mn-doped BNT ceramics. It seems that Mn ions exist in the grain, and substitute for the A- or B-site of the perovskite structure, and eject Bi ions to the air. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Perovskites; Piezoelectric properties; Lead-free piezoelectric materials; Mn additive

1. Introduction

Bismuth sodium titanate, $(Bi_{1/2}Na_{1/2})TiO_3$ (BNT) ^{1–5} is considered to be an excellent candidate as a key material of lead-free piezoelectric ceramics. The BNT shows strong ferroelectric properties of a large remanent polarization, $P_r = 38 \,\mu\text{C/cm}^2$, and has a Curie temperature, $T_c = 320^{\circ}\text{C}$ and a phase transition point from ferroelectric to antiferroelectric, $T_p = 200^{\circ}\text{C}$.

Some researchers investigated the effects of small amount of dopants such as Fe₂O₃, MnO₂ and NiO on dielectric and piezoelectric properties for perovskite ceramics. ^{6–8} Kamiya et al. ⁹ reported the effects of MnO₂ addition on piezoelectric properties of Pb(Zr_{0.52}Ti_{0.48})O₃ (PZT). They found that Mn-doped PZT possessed properties of 'soft' and 'hard' piezoelectric simultaneously.

In this study, basic dielectric, ferroelectric and piezoelectric properties of the BNT ceramic were studied on $MnCO_3$ additive. Some changes of microstructure, dielectric, ferroelectric and piezoelectric properties were investigated for BNT + $MnCO_3$ x (wt.%).

E-mail address: tadashi@takenaka.ee.noda.sut.ac.jp (T. Takenaka).

2. Experimental

The conventional ceramic fabrication technique was used to prepare BNT ceramics with MnCO₃ additives. The high purity of starting metal oxide or carbonate powders were used. These oxide or carbonate powders were mixed in acetone with zirconium balls by ball-milling for 10 h. After calcining, the ground and ball-milled ceramic powders were pressed into discs for samples, and were sintered at 1200°C for 2 h in an air atmosphere. The crystal phase of sintered ceramics was checked using an X-ray diffractometer. Microstructure of these samples were observed with scanning electron microscope (SEM) (Hitachi, S-2400). For preparing SEM samples, ceramics were polished with 3 μm diamond paste, and then were thermally etched at 1100°C for 30 min. An average grain size was obtained using a line intercept method.

Fire-on silver paste was used as the electrode for electrical measurements such as dielectric and piezoelectric measurements. Temperature dependence on dielectric constant, ε_s , and loss tangent, $\tan \delta$, was measured for the determination of the Curie temperature, T_c , at 1 MHz by using an automated dielectric measurement system with a multifrequency LCR meter (YHP 4275A). Specimens for piezoelectric measurements were poled in a stirred silicone oil at a room temperature. Piezoelectric properties were measured by means of a resonance–antiresonance

^{*} Corresponding author. Tel.: +81-471-24-1501; fax: +81-471-23-0856

method on the basis of IEEE standards using an impedance analyzer (YHP 4192A and 4194A). The electromechanical coupling factor, k_{33} , were calculated from the resonance and antiresonance frequencies. Temperature dependence of resistivity, ρ , was measured by using a high resistance meter (YHP 4329A).

3. Results and discussion

Fig. 1 shows X-ray powder diffraction patterns for BNT+MnCO₃ x (wt.%) [BNT+Mn] (x=0, 0.02, 0.1 and 0.3). These patterns show that a single phase of perovskite structure with a rhombohedral symmetry. These ceramics were very easy to sinter the ceramics with a high measured density ratio more than 90% to theoretical density. Lattice parameters, a, of BNT+Mn ceramics are almost constant (a=3.88 Å). A color of the pure BNT ceramics is white and that of BNT+Mn ceramics becomes black with increasing the amount of MnCO₃ content. These results indicate that these ceramics are reduced with increasing the amount of MnCO₃ content. The average grain size of BNT+ Mn becomes larger than that of pure BNT.

Fig. 2 shows the Curie temperature, T_c , at 1 MHz of BNT+Mn ceramics as a function of MnCO₃ content. The T_c becomes lower with increasing the amount of MnCO₃. It is supposed that Mn ions mainly exist in the grain and substitute for A- or B-site of the perovskite structure in the range of this study.

Fig. 3 shows the SEM micrograph of BNT + MnCO₃ 0 wt.% (BNT) and 0.4 wt.% on the inside and outside of the bulk sample. The shape of grains on the BNT + MnCO₃ 0.4 wt.% ceramic was difference between inside and outside of sample, and that on the outside of sample displays like a needle shape. However, that of the non-doped BNT ceramic was not like the needle shape in

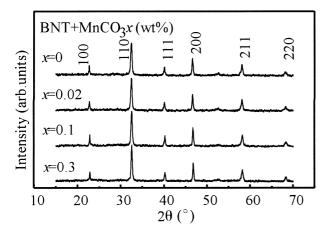


Fig. 1. X-ray powder diffraction patterns for BNT + MnCO $_3$ x (wt.%) (BNT + Mn).

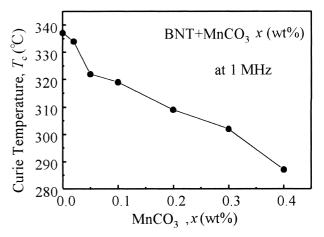


Fig. 2. Curie temperature, T_c at 1 MHz of BNT+Mn ceramics as a function of MnCO₃ content.

both inside and outside of the sample. Therefore, the shape of grains was changed by adding Mn ions in the outside of Mn-doped BNT ceramics.

Fig. 4 shows the X-ray diffraction patterns of the TiO₂ powder and on the surface of inside and outside for BNT+MnCO₃ 0 wt.% (BNT), and 0.2 wt.% ceramics. TiO₂ and unknown peaks exist on the outside of the BNT+MnCO₃ 0.2 wt.% ceramic. Table 1 shows the EDX analysis of BNT+0 wt.% (BNT), and +0.4 wt.% ceramics. The ratio of Bi/Ti ions on the stoichiometric BNT ceramic is about 0.49–0.50. However, that on the BNT+0.4 wt.% ceramic was 0.439 and 0.213 in the inside and outside of the sample, respectively. It seems that Bi ions were ejected by Mn ions to the air, so that TiO₂ peak was appeared on the X-ray diffraction pattern of Mn-doped BNT ceramics.

Fig. 5 shows the resistivity, ρ , as a function of MnCO₃ content for BNT+Mn. A maximum value of the ρ is $8\times10^{14}~\Omega$ cm for the BNT+MnCO₃ 0.2 (wt.%) at 40°C. Mn ions of BNT+MnCO₃ 0.2 (wt.%) ceramic compensate an electrical neutrality. It is considered that Mn⁴⁺ ions substitute for Ti³⁺ and Ti⁴⁺ ions.

EDX analysis of BNT + MnCO₃ 0 wt.% (BNT) and +0.4 wt.% ceramics

	BNT		BNT + Mn 0.4 (wt.%)	
	Inside (at %)	Outside (at %)	Inside (at %)	Outside (at %)
Bi	9.01	9.10	8.43	5.22
Ti	18.4	18.2	19.2	24.5
Na	14.8	15.0	13.7	7.80
Mn	0	0	0.32	0.54
O	17.7	57.8	58.4	61.5
	\downarrow	\downarrow	\downarrow	\downarrow
Bi/Ti	0.489	0.498	0.439	0.213

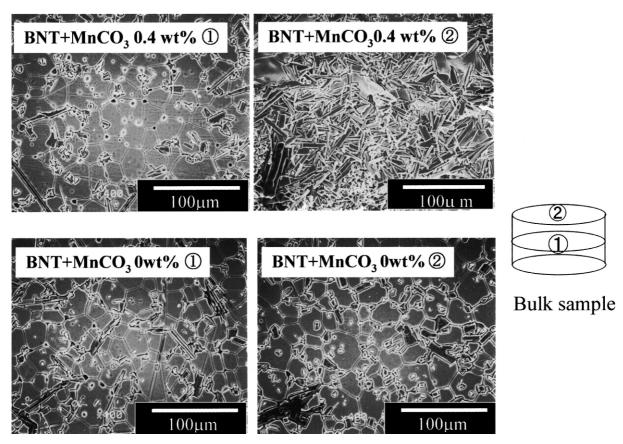


Fig. 3. SEM micrograph of BNT + MnCO₃ 0 wt.% (BNT) and 0.4 wt.% on the inside and outside of the bulk sample.

Fig. 4. X-ray diffraction patterns of the TiO_2 powder and on the surface of inside and outside for BNT MnCO₃+0 wt.% (BNT) and +0.2 wt.% ceramics.

Fig. 6 shows the poling field dependence on the coupling factor, k_{33} , of BNT+Mn ceramics. The k_{33} is almost the same under the condition of the high poling

field, $E_{\rm p}$ = 10 kV/mm. On the other hand, the k_{33} of the BNT and BNT+MnCO₃ 0.02 (wt.%) ceramics display 0.28 and 0.41 under the low poling field, $E_{\rm p}$ = 5 kV/mm,

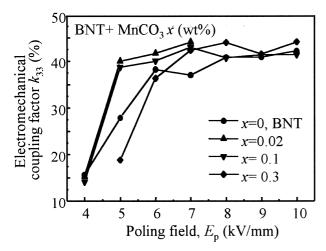


Fig. 5. Resistivity, ρ , of BNT+Mn ceramics as a function of MnCO₃ content.



Fig. 6. Poling field dependence on the electromechanical coupling factor, k_{33} , of BNT+Mn ceramics.

respectively. The k_{33} of Mn-doped BNT ceramics could be obtained the relatively high under the condition of the low poling field, E_p .

4. Conclusions

Microstructure, dielectric, ferroelectric and piezoelectric properties of bismuth sodium titanate, $(Bi_{1/2}Na_{1/2})$ TiO_3

(BNT) were studied on MnCO₃ additive for a candidate as lead-free piezoelectric ceramics. The Curie temperature, $T_{\rm c}$, decreases rapidly with increasing amount of doped MnCO₃. It is supposed that Mn ions mainly exist in the grain and substitute for A- or B-site of the perovskite structure in the range of this study. Furthermore, it seems that Mn ions eject Bi ions to the air as results from SEM, EDX and X-ray diffraction data. The resistivity, ρ , is enhanced to 3×10^{14} (Ω cm) (at 40° C) for BNT + MnCO₃ 0.2 (wt.%) and electromechanical coupling factors, k_{33} , are obtained the relatively high k_{33} under the low poling field, $E_{\rm p}$ for the Mn-doped BNT ceramics.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research (B) (No. 11555168) from the Japan Society for the Promotion of Science.

References

- Smolensky, G. A., Isupov, V. A., Agranovskaya, A. I. and Ktainik, N. N., New ferroelectrics of complex composition. IV. Sov. Phys. Solid State, 1961, 2, 2651–2654.
- Buhrer, C. F., Some properties of bismuth perovskites. J. Chem. Phys., 1962, 36, 798–803.
- Suchanicz, J., Roleder, K., Kania, A. and Handerek, J., Electrostrictive strain and pyroeffect in the region of phase coexistence in Na_{0.5}Bi_{0.5}TiO₃. Ferroelectrics, 1988, 77, 107–110.
- Takenaka, T., Maruyama, K. and Sakata, K., (Bi_{1/2}Na_{1/2})TiO₃—BaTiO₃ system for lead-free piezoelectric ceramics. *Jpn. J. Appl. Phys.*, 1991, 30(1), 2236–2239.
- Sakata, K. and Masuda, Y., Ferroelectric and antiferroelectric properties of (Bi_{1/2}Na_{1/2})TiO₃-SrTiO₃ solid solution ceramics. Ferroelectrics, 1974, 7, 347–349.
- Ikeda, T. and Okano, T., Piezoelectric ceramics of lead zirconatetitanate modified by bismuth ferrite. *Jpn. J. Appl. Phys.*, 1981, 2, 63–64
- Weston, T. B., Webster, A. H. and McNamara, V. M., Lead zirconate-lead titanate piezoelectric ceramics with iron oxide addition. J. Am. Ceram. Soc., 1969, 52, 253–257.
- Dong, D., Murakami, K., Kaneko, S. and Xiong, M., Piezoelectric properties of PZT ceramics sintered at low temperature with complex-oxide additive. *J. Ceram. Soc. Jpn.*, 1990, 27, 1090– 1094.
- Kamiya, T., Suzuki, T., Tsurumi, T. and Daimon, M., Effects of manganese addition on piezoelectric properties of Pb(Zr_{0.5}Ti_{0.5}) O₃. Jpn. J. Appl. Phys., 1992, 31, 3058–3060.