

PII S0008-8846(97)00207-X

COMPARISON STUDIES BETWEEN CEMENT AND CEMENT-KAOLINITE PROPERTIES FOR INCORPORATION OF LOW-LEVEL RADIOACTIVE WASTES

K. Sakr, M.S. Sayed, and N. Hafez¹

Hot Laboratory and Waste Management Center, Atomic Energy Authority, Cairo, Egypt

(Refereed)

(Received December 16, 1996; in final form September 26, 1997)

ABSTRACT

Comparison between the properties of cement and cement mixed with 7.5% kaolinite was performed to choose the most suitable matrix to incorporate radio-active wastes. The cement-kaolinite mixtures were prepared as uncured, cured, and heated specimens. The physical properties of the cement-kaolinite mixture, namely density, porosity, and water absorption percent, were determined. Compressive strength, infrared spectra, thermal analysis, and the effect of gamma rays on the samples were studied. The studies were extended to the cement-kaolinite mixture in the presence of some chemical additives at different concentrations. Leachability of radioactive isotopes from the cement-kaolinite mixture was measured as a function of time. The physical and mechanical properties of cement were decreased in the presence of 7.5% kaolinite, whereas ¹³⁷Cs and ⁶⁰Co were less leached from the cement-kaolinite mixture. © 1997 Elsevier Science Ltd

Introduction

Cement is used in the immobilization processes to incorporate radioactive isotopes from radioactive wastes due to its low coasts noncombustibility, self-shielding, and its high mechanical properties (1,2). Moreover, radioactive wastes are either sludges or resins mixing with chemicals that could affect the strength properties of cement and thus increase the release of incorporated isotopes from cement (3–5). Conversely, the published data (6,7) showed that silicate clays can fix radioactive elements due to their adsorption properties and accordingly decrease the leaching rates when mixed with cement.

The present work investigates the effect of some chemicals on the physical, mechanical, and thermal properties of the cement-kaolinite mixture.

Experimental

The cement used was ordinary Portland cement. The percentage chemical analysis of cement as certified by National Portland Cement Company, Helwan, Cairo, Egypt, was as follows:

¹To whom correspondence should be addressed.

1920 K. Sakr et al. Vol. 27, No. 12

CaO, 61.01; SiO₂, 19.84; Al₂O₃, 4.47; Fe₂O₃, 4.0; MgO, 2.5; K₂O, 0.60; and SO₂, 2.48 (8). The kaolinite was obtained from Aswan region, Egypt. The percentage chemical analysis of the kaolinite as certified by Arab-Swiss Engineering Company was as follows (9): SiO₂, 71.69; Al₂O₃, 16.24; Fe₂O₃, 1.43; CaO, 0.16; MgO, 0.23; SO₃⁻, 0.85; K₂O, 0.44; Na₂O, 0.01; Cl⁻, 0.01; and TiO₂, 1.79.

Hydrochloric acid, sulphuric acid, nitric acid, sodium hydroxide, citric acid, boric acid, oxalic acid, acetic acid, trisodium phosphate, tributylphosphate, ethylenedi-aminetetra-acetic acid, and sodium sulphate were prepared as stock solutions using analytical grade reagent. Simulated radioactive borate waste solution was prepared by mixing the following amount (in g/L): Na⁺, 23.9; K⁺, 7.2; Cl⁻, 1.6; CO₃⁻, 12.3; NO₃⁻, 34.5; BO₂⁻, 26.1; boric acid, 92.4; oxalate and citrate, 0.15; and 10 Bq of ¹³⁷Cs and ⁶⁰Co.

Cement and kaolinite were sieved then mixed together in dry form, at known ratios, and either water or chemical solutions were added at ratio W/C = 30% until homogenous phase was obtained. Prespex cubic molds of dimensions $7 \times 7 \times 7$ cm was used to prepare the tested cement and cement-kaolinite specimens.

Physical properties of specimens such as density, porosity percent, absorption percent, setting times (initial and final), and heat of hydration were investigated using a densitometer and a vicat apparatus. Infrared studies were carried out in the range from 600 cm⁻¹ to 4000 cm⁻¹. The differential thermal analysis and thermogravimetric analysis (DTA and TGA) were performed at room temperature (25 \pm 3°C) until 500°C with heating rate of 20°C/min.

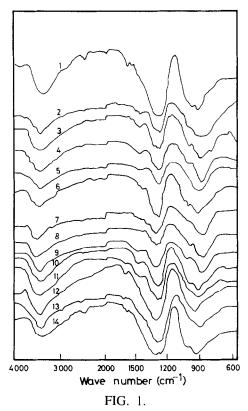
Samples of cement and cement-kaolinite were irradiated using gamma rays emitted from a 60 Co cell of activity 0.5 M rad/h at different doses.

Static leaching was carried out according to Hespe's method (10) using distilled water as a leaching solution. The samples were prepared as cubes with dimensions $2 \times 2 \times 2$ cm. Leaching experiments of 60 Co or 137 Cs from cement or cement-kaolinite samples were carried out. The released isotopes produced from the leaching effect were investigated using a multichannel gamma analyzer spectrometer of $4'' \times 4''$ NaI (Tl) crystal.

Results

The density of both hydrated cement and cement mixed with kaolinite was found to be about 2.1 ± 0.2 g/cm³. A noticed decrease in the density of cement mixed with kaolinite was observed when organic chemicals were added (Table 1). The absorption and porosity percents of cement mixed with kaolinite increased as the chemicals concentration increased. Initial and final setting times for cement in the presence of 7.5% kaolinite mixed with 30% water occurred after 140 min and 210 min, respectively. The addition of inorganic chemicals to the specimen decreased the setting times, while organic compounds such as; citric acid, oxalic acid, and EDTA (ethelynediaminetetra-acetic acid) increased the setting times. Moreover as the chemical concentration increased, the setting times decreased.

Compressive strength values for cured, uncured and heated cement, cement-kaolinite, and cement-kaolinite mixed with chemicals were given in Table 2. The presence of kaolinite or chemicals in cement decreased the compressive strength values. As the chemical concentration increased the compressive strength decreased. The decrease in the compressive strength is a result of the interaction between added chemicals and calcium ions of hydrated cement (gel or Ca(OH)₂). Cured samples had higher compressive strength values than uncured and heated


TABLE 1
Physical properties of hydrated cement, cement-kaolinite mixture, and cement-kaolinite mixed with different chemicals

Chemicals added to cement					Setting Times (min)		
+ water + kaolinite	Conc. %	Density g/cm ³	Porosity %	Absorption	Initial	Final	
Cement	0.0	2.1	16.98	11.35	60	240	
Cement + kaolinite	0.0	2.05	19.94	16.70	50	225	
HCl	5	2.01	26.00	15.60	65	265	
	10	2.00	28.20	16.80	75	285	
	15	1.92	30.80	18.80	80	290	
H ₂ SO ₄	1	1.95	36.10	26.20	45	180	
	2	1.90	38.70	28.60	40	160	
	3	1.82	42.20	32.20	35	105	
HNO ₄	1	1.95	42.60	20.60	50	220	
•	3	1.90	46.40	24.40	40	190	
	5	1.84	48.80	26.50	35	165	
NaOH	1	1.91	25.20	15.10	50	190	
	3	1.85	27.30	16.90	45	165	
	5	1.80	30.20	19.50	40	140	
Na ₂ SO ₄	1	1.97	25.80	13.20	55	215	
	3	1.97	27.20	15.20	50	190	
	5	1.87	29.20	16.80	40	175	
Na ₃ PO ₄	1	2.00	24.40	17.30	65	190	
-	3	1.97	26.20	18.90	75	230	
	5	1.91	29.10	20.40	80	285	
TBP	1	2.01	30.20	16.80	75	220	
	3	1.98	32.30	17.20	90	235	
	5	1.91	35.20	18.20	110	250	
Citric acid	0.5	2.00	42.00	23.00	90	240	
	1	1.91	44.00	26.00	150	630	
	3	1.85	00.00	00.00	480	1080	
Boric acid	1	1.92	34.80	20.80	190	260	
	3	1.86	38.20	24.20	120	330	
	5	1.74	40.20	28.20	135	275	
Oxalic acid	1	2.00	31.30	21.20	75	290	
	3	1.93	36.80	24.80	90	330	
	5	1.81	39.70	26.90	120	375	
Acetic acid	1	1.93	35.00	24.40	50	185	
	3	1.81	42.20	30.70	45	170	
	5	1.68	45.20	34.20	40	155	
EDTA	1	2.00	34.60	20.10	95	320	
	3	1.85	37.20	23.10	150	325	
	5	1.74	39.70	28.20	200	390	

specimens, respectively. The addition of organic chemical compounds to cement samples destroyed cement bonds. The added organic compounds have the ability to form chelates or complexes with calcium ions of cement, thus destroying its physical and mechanical properties.

TABLE 2
The compressive strength of hydrated cement, cement-kaolinite mixture and cement-kaolinite mixed with different chemicals

				M	aximu	m Cor	npress	ive St	rength	Kg/Cı	n^2		
Chemical added to cement + water	Conc.	Uncured			Cured			Heated					
+ kaolinite	%	3d	7d	14d	28d	3d	7d	14d	28d	3d	7d	14d	28d
Cement + water	0.0	470	555	650	700	495	590	730	780	520	590	640	660
Cement + kaolinite	0.0	410	470	530	555	420	510	680	730	450	520	650	580
HCl	5	320	370	420	450	380	455	580	670	370	375	410	440
	10	290	310	390	400	340	430	535	630	345	350	395	400
	15	260	280	325	375	300	400	510	590	320	340	370	355
H ₂ SO ₄	1	260	350	400	390	270	360	450	450	300	350	360	365
	2	190	240	270	245	185	250	280	260	200	265	285	290
	3	125	180	210	190	110	160	200	195	105	165	210	210
HNO ₃	1	380	430	500	510	400	450	535	630	400	450	485	285
	3	360	385	460	480	360	420	505	610	365	400	400	427
	5	315	340	430	455	330	400	480	555	300	350	360	360
NaOH	1	295	350	390	390	310	350	385	395	290	345	340	250
	3	235	280	350	360	290	290	290	300	170	250	280	280
	5	88	150	165	180	100	135	300	225	125	150	180	180
Na_2SO_4	1	400	425	470	480	395	440	485	515	390	420	430	450
	3	320	400	420	460	350	410	440	480	335	380	400	420
	5	230	240	295	315	245	280	330	385	225	235	260	290
Na ₃ PO ₄	1	340	420	450	500	390	440	480	560	320	350	360	400
	3	250	320	390	420	280	390	430	440	390	310	340	370
	5	180	240	310	340	220	300	360	380	265	290	290	300
Citric acid	l	365	425	530	490	360	430	85	520	352	395	410	415
	3	265	335	490	368	260	370	406	425	285	295	310	310
	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Boric acid	0.5	345	390	430	450	65	480	580	650	310	390	415	450
	I	295	310	350	380	340	450	550	600	260	285	295	300
	3	115	135	200	250	250	360	540	550	87	88	85	120
Oxalic acid	1	300	340	425	450	325	415	480	520	360	20	425	430
	3	260	300	350	380	270	360	400	440	270	300	335	340
	5	220	260	300	340	185	270	335	340	200	230	250	260
Acetic acid	1	360	420	450	480	320	465	570	600	305	380	420	430
	3	280	305	400	420	270	400	475	490	270	310	375	390
	5	240	290	350	360	190	170	335	350	225	260	290	310
EDTA	1	290	320	330	360	295	330	390	400	280	305	310	330
	3	250	265	285	300	240	300	350	360	205	240	260	275
	5	200	235	230	230	190	235	250	260	175	200	210	225
TBP	1	310	360	370	380	290	360	390	420	250	280	325	340
	3	280	325	330	350	270	330	350	370	220	250	280	300
	5	215	235	260	280	235	275	335	350	170	210	250	260
Simulated waste	0.75	160	320	365	390	190	345	385	460	135	265	275	290
	1.5	150	215	230	245	170	270	295	420	100	140	150	170
	3.0	130	185	195	200	150	215	230	300	60	65	75	100
	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

IR spectra of (1) hydrated cement, (2) cement-kaolinite, and cement kaolinite mixed with (3) 15% HCl, (4) 3% H₂SO₄, (5) 5% HNO₃, (6) 5% NaOH, (7) 5% Na₂SO₄, (8) 5% acetic acid, (9) 3% citric acid, (10) 5% oxalic acid, (11) 5% boric acid, (12) 5% TBP, (13) 5% EDTA, and (14) 50% simulated borate waste.

The infrared spectra of cement (Fig. 1) showed the presence of absorbed peaks near 3400 cm $^{-1}$, 1660 cm $^{-1}$, 1440 cm $^{-1}$, and 1100 cm $^{-1}$, which are mainly due to the vibration of the hydrogen bond of free water molecules in cement. The infrared spectra has also peaks at 925 cm $^{-1}$, 835 cm $^{-1}$, 520 cm $^{-1}$, and 465 cm $^{-1}$ due to vibration of water in the C_2S , C_3S , and Al-O of cement. The band at 1100 cm $^{-1}$ is due to sulphate. The infrared spectra of cement mixed with chemicals are all similar to cement spectra (11). Therefore it can be stated that the chemical added to cement kaolinite mixtures could combine to both water attached to hydrated cement (C-S-H) (C_2S , C_3S , and Al-O) and water in carbonates and calcites of hydrated cement samples.

The thermogravimetric analysis (TGA) results (Table 3) showed that the weight loss in hydrated cement-kaolinite was about 5% at 500°C. Chemicals added to cement increased the weight loss of samples to 8% at 500°C. The differential thermal analysis diagrams (DTA) of hydrated cement-kaolinite samples (Figs. 2a and b) showed an endothermic peak at 80–100°C, which is related to free water in the specimen (12). The DTA of cement-kaolinite or cement-kaolinite mixed with chemicals showed an exothermic peak at 280°C-350°C due to the presence of water molecules that are strongly bounded to calcium hydroxide in hydrated cement (13).

Figure 3 shows the compressive strength for some of the studied samples after gamma

1924 K. Sakr *et al.* Vol. 27, No. 12

TABLE 3
The weight loss of hydrated cement, cement-kaolinite and cement-kaolinite mixed with different chemicals

Samples	Weight loss %					
Cement	4.97					
Cement + kaolinite	4.92					
15% HCl	8.02					
3% H ₂ SO ₄	5.60					
5% HNO ₃	7.14					
5% NaOH	5.22					
5% Na ₂ SO ₄	6.37					
5% Na ₃ PO ₄	7.54					
5% TBP	5.99					
3% Citric acid	4.56					
5% Boric acid	5.15					
5% Oxalic acid	5.42					
5% Acetic acid	7.17					
5% EDTA	7.60					

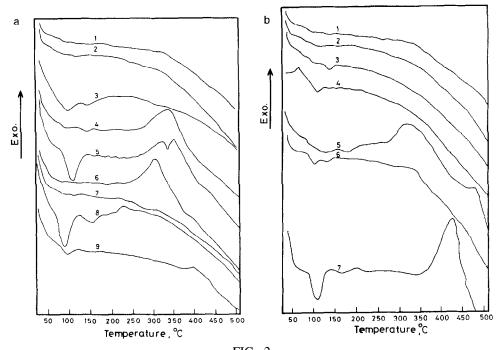
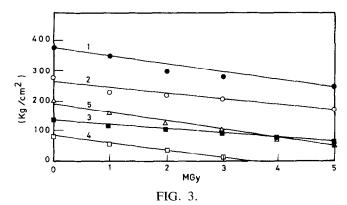
irradiations to certain absorbed doses. As the absorbed gamma dose increased, the compressive strength and the density of samples decreased. Such effect was clearly remarked in the case of adding chemicals to cement that decrease the cement properties.

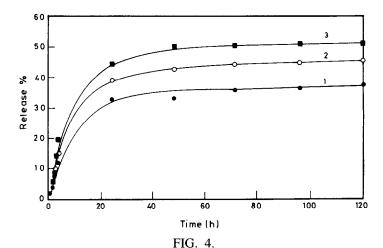
Leachability studies showed that the presence of kaolinite in cement decreased the amount of radioisotope released (Fig. 4). As the amount of nonactive salt increased in the cement-kaolinite mixture, the leachant amount percent increased. This is due to the competition between the active and nonactive ions to release from cement. The presence of chemicals in the cement-kaolinite mixture increased also the leachant percent. Previous studies (6,7) showed that kaolinite could adsorb radioactive isotopes on the gel or Ca(OH)₂ of hydrated cement, thus decreasing the release of such ions from the cement-kaolinite mixture.

Conclusion

From the obtained results, it can be seen that ordinary cement has a higher compressive strength value than cement in the presence of 7.5% kaolinite. Chemicals added to cement-kaolinite decreased the strength and physical properties of cement-kaolinite. As the concentration of chemicals increased, the compressive strength of cement samples decreased while leachability of radioisotopes from cement-kaolinite decreased.

The cement-kaolinite mixture is a suitable matrix material to immobilize low-level radio-active wastes. The chelating agents or organic compounds should be avoided to mix with the cement mixture, because there is a complete deficiency of the properties of cement. Moreover, the 1% of inorganic compounds could be incorporated in the cement-kaolinite paste. The presence of 7.5% of kaolinite to cement improved the conditioning properties of cement. Therefore, it can be recommended that the addition of kaolinite to cement at a ratio of 7.5%


FIG. 2.

(a) DTA thermographs of (1) hydrated cement, (2) cement-kaolinite, and cement kaolinite mixed with (3) 15% HCl, (4) 3% H₂SO₄, (5) 5% HNO₃, (6) 5% NaOH, (7) 5% Na₂SO₄, (8) 5% Na₃PO₄, and (9) 3% citric acid. (b) DTA thermographs of (1) hydrated cement, (2) cement-kaolinite, and cement-kaolinite mixed with (3) 5% boric acid, (4) 5% EDTA, (5) 5% oxalic acid, (6) 5% TBP, and (7) 5% acetic acid.

The effect of gamma absorbed doses on the compressive strength of (1) cement-kaolinite and cement-kaolinite mixed with (2) 15% HCl, (3) 5% NaOH, (4) 1% citric acid, and (5) 0.75% simulated borate waste.

1926 K. Sakr *et al.* Vol. 27, No. 12

Leaching of ¹³⁷Cs from the cement-kaolinite mixture in the presence of different percents of CsCl (0.2, 0.4, and 0.6).

improves the leaching properties of cement when low-level radioactive waste sludges were immobilized.

References

- International Atomic Energy Agency, Treatment of Low- and Intermediate-Level Liquid Radioactive Wastes, Tech. Rep. 236, IAEA, Vienna, 1984.
- H. Christensen, Cement Solidification of BWR and PWR radioactive Waste at the Ringhals Nuclear Power Plant, On Site Management of Power Reactor Waster, Proc. Symp. Zuruch, 1979, OECD, Paris, 333.
- D.M. Roy, Cement Based Nuclear Waste Solidification Forms, NUREG/CP-005, 479-509 (1978).
- G.S. Barney, Fixation of Radioactive Wastes by Hydrothermal Reactions With Kaolinites, ARH-SA-147, Atlantic Ruichield Hanford, Richland, Washington, Jan. 1974.
- W.W. Schulz, A.L. Dressen, and C.W. Hobbick, Immobilization of Spent Cladding Hulls by Conversion to Silicate Forms, ARH-SA-193, Atlantic Richield Hanford, Richland, Washington, Oct. 1974.
- G. Volckaert et al., The Potential use of Swelling Kaolinites for Back Filling and Sealing of Underground Repositories. Proceedings of a Final Research Coordination Meeting held in Rez, Czechoslovakia, November 4–8, 47–58 (1991).
- 7. N. Hafez and F.I. Said, Arab J. Nucl. Sci. Appl. 23, 250-258 (1990).
- 8. Private communication with National Cement Company at Helwan, 1992.
- 9. Private communications with Arab Ceramic Company at Abu-Zabal, 1992.
- 10. E.D. Hespe, Atom. Energy Rev. 9, 195-207 (1971).
- 11. T.C. Powers and T.L. Brounyard, VI Proc. Am. Concr. Inst. 44, 845 (1974).
- 12. F.M. Lea, The Chemistry of Cement and Concrete, third edition, 1970.
- 13. G. Verbeck, Fourth Int. Symp. Chem. Cem., Washington D.C., 1960.